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Abstract

The SystemVerilog 3.1 language initiative includes the
requirement to bring together design, testbench, and
assertion-based descriptions into a consistent, back-
ward compatible, evolutionary language standard that
achieves determinism and common semantics across the
spectrum of design and verification tools. This paper
describes the algorithm proposed for the new schedul-
ing semantics that meets these demanding requirements.
This algorithm achieves predictable and consistent
results across design and verification tools. This pro-
posal has been donated to the Accellera SystemVerilog
3.1 standardization technical committees. Standardiza-
tion of this new algorithm will extend these benefits to
users of other tools.

1. Introduction

The increasing complexity of today's designs is turning
the verification process into the most critical bottleneck
in the design flow. In addition, the changes taking place
in the design of System-on-Chips are making traditional
verification methodologies obsolete. To address these
problems, the SystemVerilog 3.1 initiative strives to
increase the verification capabilities of Verilog substan-
tially by incorporating testbench features and assertions
in the same language.

Assertion-based verification is gaining considerable
momentum, as promises to improve the effectiveness of
today's simulation-based verification methodologies by
incorporating knowledge of the designer's intent in the
verification process. Several proprietary assertion speci-
fication formats exist today. Unfortunately, all of these
formats are inherently different from Verilog, and this
makes it difficult for designers to adopt them in their
designs. With the addition of assertions in the System-
Verilog standard, the industry has taken the first step
toward establishing a standard mechanism that allows

assertions to be specified once, and used in different
tools, from simulation to formal verification.

A critical problem of adding new and more abstract fea-
tures to an event-based language is dealing with the race
conditions that arise from the interactions between new
and existing constructs. A simulation race occurs when
multiple events happen at the same time and the out-
come depends on the order of the events. Races in Ver-
ilog have always been of two kinds: the real ones in the
hardware, and the ones that are purely an artifact of the
timing abstractions used to model concurrency. Verifica-
tion tools should assist in discovering the former while
minimizing the latter. Towards that end, our proposed
algorithm aims to separate the execution of verification
and design code into three distinct categories: design,
assertions, and testbench.

One of the most misunderstood aspects of Verilog is its
event-driven simulation algorithm, and its potential for
race conditions. As a design moves into the system veri-
fication phase, several purported safe-coding styles may
come together, and cause verification engineers to spend
many frustrating hours debugging obscure simulation
race conditions. With the advent of reusable verification
and implementation IP, often from different providers,
the problem of race conditions between the design and
the testbench is often exacerbated.

Races between the design and the testbench are usually
unrelated to the physical races that may be present in the
hardware [5]. More commonly, races between the
design and the testbench are introduced by the simula-
tion algorithm in what may be a correctly working sys-
tem. Engineers avoid some of these races by writing
parts of the testbench in C and making use of various
PLI calls to synchronize their execution. A common
technique is to synchronize execution of testbench code
to the end of the time-slot, at a point when the testbench
inputs are stable and the testbench code can compute a
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response. Another technique is to synchronize to the
beginning of the time-slot in order to sample and save
the values of various design variables before they are
modified. Formalizing these synchronization semantics
in SystemVerilog's scheduling algorithm allows the
same functionality to be written directly in SystemVer-
ilog without resorting to a C interface for special seman-
tics.

To fully support clear and predictable interactions, the
proposed algorithm divides a single time slot into multi-
ple ordered regions of executions. New regions allow
properties and checkers to sample data when the design
under test is in a stable state. This enables assertions to
be safely evaluated, and testbenches to react to both
properties and checkers with zero delay, all in a predict-
able manner. In the proposed algorithm, this determin-
ism is accomplished by adding three new execution
regions to the Verilog scheduling algorithm: preponed,
observe, and reactive. This same mechanism also allows
for non-zero delays in the design, clock propagation,
and/or stimulus and response code to be mixed freely
and consistently with cycle accurate descriptions.

2. A brief history of simulation races

Over the past few decades, there have been various
implementation approaches to the simulation of digital
hardware systems, and the event-directed simulation
technique has emerged as the most widely used. The
major underlying motivation for inventing new tech-
niques has been the need to increase simulation perfor-
mance. When the first version of Verilog was created in
1984/85, gate-level primitives were the dominant form
of modeling digital logic [2]. There were many kinds of
gate-level simulators in use 15 years ago, and all of
them had problems with simulation races, especially
when zero-delay networks were used in the modeling.

Event-directed simulation algorithms model hardware
timing approximately, ranging from accurate primitive
and interconnect delays for ASIC sign-off simulation to
zero-delay for verifying the functionality while leaving
the timing analysis to other tools. The use of zero delay
modeling has become one of the most popular tech-
niques in the simulation of very large digital systems.
An extreme form of zero-delay simulation is cycle-sim-
ulation, in which all the zero-delay combinational logic
is levelized into a statically defined evaluation order,
and the state variables are updated by performing a sim-
ple next-state sequence control; the clock signals are
abstracted out. Cycle-simulators promise significant
performance benefits because various kinds of optimiza-
tion techniques open up to the simulation implementors.

However, cycle-simulators suffer from serious race
problems that are very hard for users to avoid. Most of
today’s leading-edge digital simulators use a combina-
tion of techniques, including event directed and cycle-
simulation.

In a Verilog simulator, when a variable is updated with a
new value, the simulator evaluates the primitives and
processes that are sensitive to the changing value. The
order in which the primitives and processes are evalu-
ated is not defined in the language standard. Also, if
these evaluations schedule other events with zero delay,
the order of these new events is also not defined. So
what execution order can the user rely on to predict the
outcome of potentially racy situations?

To illustrate a simple zero-delay potentially racy situa-
tion, consider the circuit in figure 1. This is a two-stage
shift register that uses D-type flip-flops and a common
clock signal. In Verilog, there are several ways to model
the flip-flops. These flip-flop networks require careful
placement of non-zero delays to create predictable, race-
free models.

FF1 b FF2

clk |

Figure 1. A 2-stage shift register

Verilog introduced more convenient methods for coding
flip-flops. User defined primitives (UDP’s) was one
method that focussed on simulation performance and
flexibility in modeling the logic, and allowed a flip-flop
to have zero-delay. In the example in figure 1, if the flip-
flops are implemented with UDP’s, a clock signal on clk
will cause both flip-flops to be evaluated in some
unspecified order. It is therefore important in the evalua-
tion of FF1 that, if b is to change value, the update of b
happens after the evaluation of FF2, otherwise the sam-
pling of b by FF2 will incorrectly read the new value of
b. In this network structure, the correct behavior is guar-
anteed because the writing to b will occur in a sepa-
rately scheduled event after both flip-flops have
sampled their data inputs. Care does need to be taken,
however, not to introduce extra logic in the clock fanout.
For instance, a zero-delay gate in the clock fanout lead-
ing to FF2 will introduce an unpredictable race.

A conceptual waveform view of the correct sequence of
actions that must be taken is illustrated in figure 2.
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Figure 2. The data sampling and driving
sequence in the shift register

3. Eliminating design races with NBA’s

Another, more popular, method of modeling flip-flops is
with always statements [3], and one convenient way to
write the shift register example is

always @(posedge clk) begin

c=b;
b=a;,
end

Here, the sequence of assignments guarantees that the
order of reading and writing the variables produces the
correct result. This type of coding became popular
because it had the advantage of being easily understood
and synthesizable, even when the right-hand-side
expressions became complex and included function
calls. A problem, however, that developed is that the
flip-flops were coded separately:

always @(posedge clk) c = b;
always @(posedge clk) b = a;

Now a simulation race has been introduced because the
evaluation order of the processes on the clock fanout is
unspecified, even though the code is interpreted cor-
rectly for synthesis. In simulation, it is possible for the
assignment to b in the second always statement to be
completed before the assignment in the first always
statement reads the value of b. An early workaround to
this problem was to insert temporary variables, as in

assign #1 c = cTemp;
always @(posedge clk) cTemp = b;
assign #1 b = bTemp;
always @(posedge clk) bTemp = a;

Ugly, but it worked, and gave the same simulation
results as the synthesized code. It was not long before
those users, who insist on modeling exclusively with
zero-delay, tried substituting #0 for the continuous
assignments. This actually also works, only because of
the typical event ordering techniques used in event-

directed simulators. Eventually, in order to preserve this
coding style, the semantics of #0 was written into the
IEEE Verilog standard.

Inserting temporary variables, and especially extra
delays, leads to code bloat and degrades simulation per-
formance. So this problem was the compelling reason to
introduce non-blocking assignments (NBA’s) into Ver-
ilog. NBA’s provide a well defined region in the time
slot, after all the design clock signals have propagated
and clock triggered processes have executed, but before
time advances. The mechanism also allows the simula-
tor to optimize the execution. The coding with NBA’s is
simply

always @(posedge clk) c <=b;
always @(posedge clk) b <= a;

The simulator will implicitly save the right-hand-side
values, and suspend updating the left-hand-side vari-
ables until both processes have read the right-hand-side
variables. The updates of the left-hand-side variables are
then predictably applied with zero-delay in the NBA
region of the time slot.

4. Assertions

When used correctly and consistently, NBA's have been
largely successful in eliminating many simulation races.
Nonetheless, the addition of NBA’s to Verilog entailed
the creation of the NBA region in the simulator's event
scheduler. To show that additional event ordering is
required for assertions [7], we will analyze two types of
assertions: continuous invariant assertions and clocked
assertions.

Continuous invariant assertions describe a Boolean
expression that must be true at all times. These asser-
tions are sometimes called combinational assertions. An
example of an invariant assertion that ensures non-over-
lapping clocks is

(clk1 && clk2) == 0

When the variables in the expression change in the same
time slot, which will happen in a zero-delay simulation
model, a “false firing” may occur due to a race. For
example, in the same simulation time slot, clkl may
change to 1 before clk2 changes to 0. With the correct
delays, of course, this condition should not occur. How-
ever, users demand zero-delay modeling for RTL simu-
lation. Thus, the reading of the variables and the
evaluation of the expression must wait until all potential
value changes on the variables have completed. Since
the variables could be driven with NBA assignments,
the invariant evaluation must be done after the NBA
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region, at a point when the design is stable. Yet, there is
no mechanism to do this in Verilog. Instead, the PLI
read-only synchronization callback [4] is used by add-
on tools to get to the end of time slot region, but as we
shall see this is a limited mechanism.

The proposal for SystemVerilog 3.1 defines a new
region called the observe region, in which invariant
assertions can be safely evaluated.

Clocked assertions are synchronized to some clock sig-
nal. To illustrate why it is necessary to be clear about the
scheduling semantics with clocked assertions, we re-
code the shift register shown in figure 1 as

assign #0 gclk = clk;
always @(posedge gclk) b =a;
always @ (posedge clk) c = b;

According to the IEEE Verilog standard this coding is
guaranteed to simulate correctly and is also code that
synthesizes correctly. The first always statement will
execute after the second one because of the semantics of
the #0 delay in the clock line.

We now specify a temporal assertion about this design
with the following SystemVerilog code

sequence @(posedge clk) sa=(la; a; la);
sequence @(posedge clk) sc=(Ic;c; lc);
property p = (sa =>[2]sc);

assert (p) pass_statement; else fail statement;

This group of concurrent statements asserts that a
clocked 010 data sequence on the input a implies that
the output ¢ should experience a clocked 010 sequence,
2 cycles later. The important questions that must be
answered about the semantics of these statements are

1) Which values of a and ¢ should be used?
2) When does the property p get evaluated?
3) When do the pass/fail statements execute?

The first question is straightforward. The values of a
and ¢ must be sampled before any events can change
their value in the time slot in which the clock triggers.
The proposal for SystemVerilog is for this sampling to
occur within a preponed region that exists at the begin-
ning of the time slot. Simulator implementations may
optimize the actual sampling mechanism to take place
elsewhere, as long as the semantics are preserved.

The answer to the second question is flexible. Since the
sampled values of a and ¢ do not change throughout the

time slot, the property may be evaluated anytime after
detecting the clock trigger and before the end of the
observe region, along with the invariant assertions. The
only requirement is that the outcome of the assertion be
predictable and available by the end of the observe
region. It is interesting to note that various properties or
sequences clocked by the same clock may exhibit order-
ing requirements. For example, sa and s¢ must be evalu-
ated prior to p.

To answer the third question, we must consider what
kinds of actions are allowed in the pass/fail statement. It
is a requirement, that code executed by assertions must
not be allowed to change the state of the design. In our
proposal, we regard the pass/fail statements as reactive
testbench code, and create a new region called the reac-
tive region in which this code is executed. Events sched-
uled into the reactive region are executed after the
observe region, and before time advances.

5. Design and testbench interactions

To incorporate assertions into SystemVerilog, we pro-
posed extending the scheduling algorithm to include
three additional execution regions: preponed, observe,
and reactive. This section examines if the existing
regions are sufficient to satisfy the demands of the test-
bench.

The main function of a testbench is to generate stimulus
for the design, and check the results in order to verify
that the design conforms to its specifications. A test-
bench typically includes numerous models, often writ-
ten at various levels of abstraction, and sometimes
requiring special synchronization semantics. Typically,
some models need to synchronize to a stable point in the
time slot [6]. For example, models of large pass transis-
tor networks, whose repeated evaluation can severely
degrade performance, and asynchronous memory mod-
els that can trigger special code when certain memory
locations are accessed. Thus, it is at the testbench level
that many different methodologies come together and
exacerbate the need for predictable behavior. We illus-
trate this with a simple example.

The design example shown in figure 3 consists of an
arbiter with two serial channels: channell and channel2.
The number of channels can easily be increased, but we
illustrate just two in the example. Each channel is driven
by its own independent clock and is capable of buffering
one message or data packet. When a full message is
received, the channel raises its request line to gain
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access to some common resource, which could be a par-
allel bus, another serial channel, or some other device

data reql
-----* Channell
2 "~ grantl
clkl
arbiter
data req2 q
EmEEm ’ Chann612 P "
A "~ grant2
clk2 >

Figure 3. The 2-channel arbiter example

The role of the arbiter is to grant access to the shared
resource by raising the corresponding grant signal and
keeping it that way until the request is removed. In addi-
tion, the arbiter must enforce a policy for granting
access to the shared resource. The hardware that imple-
ments the arbiter will certainly need special circuitry to
synchronize the various clocks. That hardware can take
several forms depending on the arbiter's policy: a simple
daisy chain for a fixed priority policy, or a more com-
plex synchronizer that implements a round robin or load
balancing policy. Regardless of the policy in use, a test-
bench for the arbiter needs to ensure that the arbiter cor-
rectly implements the policy under various scenarios.
Thus, to ensure that various clocking conditions are cov-
ered, the testbench must maintain some coverage met-
rics.

A testbench will not replicate the synchronization hard-
ware; instead, it will implement the policy checker at a
higher level of abstraction. This is simpler and desirable
because a higher level description that verifies the syn-
chronization avoids repeating in the testbench the same
bugs as in the implementation.

A simplified testbench for this 2-channel arbiter can be
written as:

// sample requests with corresponding clocks
always @(posedge clkl) arbReql <=reql;
always @(posedge clk2) arbReq2 <= req?2;

// arbiter testbench
always @(arbReql or arbReq2) begin
case ({arbReq2, arbReql})
// policy checker
endcase
end

The case statement analyzes the current state of both
request lines simultaneously, in an attempt to catch the
various clocking conditions. Note that correct modeling
of the arbiter protocol requires that the case statement
execute only once per time slot. However, because clkl
and clk2 may trigger at arbitrary times during the execu-
tion of the time slot, that statement may be executed
multiple times. If the arbiter testbench were written in
C, this race condition could easily be overcome by
delaying execution of the testbench until all clocks have
triggered [6]. But, until now, this testbench could not be
written in standard Verilog code.

It's important to note that if the two clocks do not trigger
at the same time during the test then it is still the respon-
sibility of the testbench to report that fact as a coverage
hole. Therefore, even to maintain a simple coverage
metric (i.e., how many channels triggered simulta-
neously), a testbench written in standard Verilog code
could misbehave and yield incorrect coverage metrics.

The new scheduling semantics has the reactive region in
which a SystemVerilog testbench can execute the exam-
ple code in a predictable manner.

The example above can be made more interesting if the
request lines themselves are not the outputs of some
models, but are instead generated by a set of assertions
that model the system via state machine transitions of an
abstract system.

property pl = @(posedge clk1)
(('reset ;[2]idle) => (!busy;[1:15] rdyl));l
property p2 = @(posedge clk2) ...

always @(p1 or p2) begin
arbReql =pl; // get property status
arbReq2 = p2;
// arbiter testbench
case ({arbReq2, arbReql})

endcase
end

This example will not work correctly unless the asser-
tions execute before the arbiter code. This is a key
observation because it introduces an ordering constraint
on the execution of SystemVerilog assertions and test-
bench code. This ordering constraint enforces the need
for a separate reactive region that can react to the out-
come of the assertions. Since assertions are forbidden
from modifying the state of the system as a side effect of
their execution, they delay execution of pass/fail state-

1. This is proposed syntax that is subject to change.
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ments until the reactive region in which the rest of the
testbench executes.

6. The complete new scheduling algorithm

We have introduced three new regions to the existing
Verilog standard regions for evaluating assertions and
executing testbench code. This section describes the
algorithm that compliant SystemVerilog simulators
should follow. The semantics of executing Verilog code
is actually extremely complex, and a user does not need
to understand every detail of how a simulator is imple-
mented. So to produce sufficient semantic content, we
need to understand the major principles guiding how
detailed the semantics should become. They are:

1) Provide the user with sufficient conceptual informa-
tion so that it is possible to predict the behavior of well-
constructed code consistently across design and verifi-
cation tools.

2) Provide the tool implementors sufficient information
so that tool performance can be maximized whilst main-
taining the predictable behavior of well-constructed
code.

3) Provide an event-scheduling framework that suffi-
ciently defines PLI callback points so that writers of PLI
code can reliably predict which simulation events have
executed.

The proposed scheduling algorithm for SystemVerilog
is an extension to the IEEE Verilog 1364-2001 standard
[1, section 5]. A time slot is divided into a set of ordered
regions, where each region is a container for a particular
set of simulation events. The order in which events are
executed in any given region is undefined by the seman-
tics. A flow diagram showing conceptually the order of
executing the regions is depicted in figure 4.

The active, inactive, NBA, observe and reactive regions
are known as the iterative regions.

The preponed and postponed regions are for registering
PLI callbacks.

The preponed region enables PLI code to access simula-
tion data in a time slot before a variable can change state
or process executes. The preponed region is also the
region where sampling of steady state data takes place.

The postponed region enables PLI code to be suspended
until after all the iterative regions have completed. This
is where the Verilog standard tf rosynchronize and
cbReadOnlySynch calls are made.

The active, inactive, and NBA regions are standard and
unchanged from the 2001 standard.

The observe region is where invariant assertions may be
evaluated. It is also the last region in which clocked
assertions may be evaluated.

The reactive region is where testbench code is executed,
including the pass/fail statements of assertions.

from previous @
time slot
4

A

< active ) >
v

< inactive ) >
A

postponed to next
time slot

Figure 4. The SystemVerilog flow of event
regions within a time slot

7. Conclusions

By unifying testbench features and assertions together
with design into one language, SystemVerilog aims to
substantially reduce the verification bottleneck. Stan-
dardizing the semantics of these verification-specific
features will assure users that the functionality verified
by assertions via simulation will provide the same
results as proving those assertions with formal tools. By
embedding the verification code, as assertions, directly
in-line with the design, it can be used throughout the
verification process by multi-disciplined teams. This
integration of testbench and assertions allows comple-
mentary verification methodologies that seamlessly
bring formal verification and simulation together in a
way not previously possible.
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To guarantee predictability and consistency between
design, testbench and assertions, SystemVerilog 3.1
requires a unified and deterministic scheduling algo-
rithm. We have presented a new algorithm that extends
the Verilog standard algorithm in the form of ordered
execution regions. The regions are organized to allow
deterministic simulation results that correspond pre-
cisely between event and formal semantics. Backward
compatibility is assured by the addition of three new
regions to the scheduler: a preponed region, an observe
region, and a reactive region.

The scheduling semantics formalizes the execution
regions, and enables access to them from within the Sys-
temVerilog language. This enables functionality to be
coded directly in SystemVerilog, without resorting to
the PLI.

Using one language for both design and verification
lessens the need for verification environments designed
using combinations of Verilog and PLI, enables the
same code to be used consistently across all design and
verification tools, and also brings about significant per-
formance and productivity improvements. The proposed
scheduling algorithm makes all this possible by adding
three extra regions of execution to the standard Verilog
scheduler.
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