Updated February 13,2003 merging the SV-BC issues, ETF issues, and other unlisted issues.

Following are some problems I found in the “System-Verilog 3.0 Accellera’s Extensions to Verilog” publication published on June the 3rd 2002. Please note that these problems are view through the eyes of a person who is implementing a System-Verilog parser. Therefore most of this document refers to the syntactic definition of the System-Verilog 3.0 Language.

Parts of the publication are quoted in this document. Please note that these parts are copyrighted by the Accellera organization. 

Most of the suggested changes are typo fixes and removal of redundant rules in the System-Verilog BNF (Annex A).

All the changes can be tracked using the Microsoft Word changes tracking tool. (Use the “Reviewing” toolbar (from the Microsoft word menu - View > Toolbars > check in the Reviewing tool bar). Sections 7 and 8 contain more changes (these can not be tracked using the tracking tool).

Thanks


Dan Jacobi - CAD Engineer 


Intel Corporation

1. Contact Information

For Any questions, clarifications or remarks you can contact me at :

Mail    : Dan Jacobi

             Intel Israel (74) LTD.

             Mail Stop – IDC-4D

             M.T.M Scientific Center

             P.O.Box 1659

             Haifa 31015

             Israel

E-mail : dan.jacobi@intel.com
Tel      : (972)-4-8655855

2. Conventions

The conventions used in this document are:

· Text that was a part of the Accellera publication and should be removed is stroke out using the “Double strikethrough” – removed text.

· My comments and explanations are in blue italic text. They should not be part of the publication.

· Changed and added text is sometimes colored in red.

· Lingual features added to the Accellera publication or removed from the publication are highlighted in blue. See more details about these features under sections 7 and 8 of this Document.

· Page numbers, table numbers and chapter numbers from the original Accellera publication are in purple italic text.

· References to the IEEE ETF issues and the SV-BC issues are colored in Green. Changes from the original proposal are also colored in Green.
· Opened issues will be highlighted in red.

· Opened issues waiting for the ETF decisions will be highlighted in pink.

3. Operators – Chapter 7
This issue is labeled as SV-BC-19-1 and was accepted on 11/11/02. This issue is related to ETF #133.

The second form of the xnor (not exclusive or) operator ^~ is missing in the precedence table.

Pages 23-24 Table 7-2 should be modified to:
Table 7-2—Operator precedence and associativity

	() [] . 
	Left

	Unary ! ~ ++ -- + - & ~& && | ~| || ^ ~^ ^~
	Right

	** 
	Left


Table 7-2—Operator precedence and associativity (continued)
	* / % 
	Left

	+ - 
	Left

	<< >> <<< >>> 
	Left

	< <= > >= 
	Left

	== != === !== 
	Left

	& 
	Left

	^ ~^ ^~
	Left

	| 
	Left

	&& 
	Left

	|| 
	Left

	?: 
	Right

	= += -= *= /= %= &= ^= |= <<= >>= <<<= >>>= 
	None


4. Interfaces – Chapter 13
This issue is labeled as SV-BC-19-2. Partially was accepted on 12/20/02 (E-mail voting) only for example under 13.4 (SV-BC-22-2). This issue was fully accepted on 01/29/03 (all other examples that are not under 13.4).
According to the BNF in Annex A sub-bullets A.4.1.1 and A.4.1.2 the proper way to instantiate an interface is using the following syntax:

   <Interface Name> [#<Parameter Assignment List>] <Instance Name> (<Port List> );

Braces “( )” must be used after the instance name even if the port list is empty.

Quoting the BNF :
interface_instantiation ::=

interface_identifier [ parameter_value_assignment ] module_instance { , module_instance } ;
module_instance ::= name_of_instance ( [ list_of_port_connections ] )
In the some of the RTL examples in chapter 13 that instantiate interfaces with out any ports the braces are missing. 

I suggest that the BNF will not be changed. If the addition of the braces for interfaces with out any ports will be optional this might cause some confusion between when trying to distinguish between interface instantiations on one-side and interface port declarations and user defined data-types signal declarations on the other side. As shown in the following RTL :

typedef logic t1;

interface i1(…) … endinetrface
interface i2(…) … endinterface
module m1 (port1)


i1 port1; 

// This is a interface port declaration


t1 myt1; 

// This is a user defined data-type signal declaration


i2 i2instance();
// This is an Interface instantiation

…

The examples in chapter 13 should be modified as described :

Page 67 sub-bullet 13.2.2 first RTL example :


module top;

logic clk = 0;

simple_bus sb_intf(); // Instantiate the interface

memMod mem(sb_intf, clk); // Connect the interface to the module instance

cpuMod cpu(.b(sb_intf), .clk(clk)); // Either by position or by name

endmodule

Page 67 sub-bullet 13.2.2 second RTL example :
module top;

logic clk = 0;

simple_bus sb_intf();

memMod mem (.*); // implicit port connections

cpuMod cpu (.*); // implicit port connections

endmodule
Page 68 sub-bullet 13.2.3 first RTL example :

module top;

logic clk = 0;

simple_bus sb_intf(); // Instantiate the interface
Page 68 sub-bullet 13.2.3 second RTL example :

module top;

logic clk = 0;

simple_bus sb_intf();
Page 70 sub-bullet 13.4 second RTL example :

module top;

i2 i();

Page 70 sub-bullet 13.4 third RTL example :

module top;

i2 i();

Page 70 sub-bullet 13.4 forth RTL example :

interface i1;

interface i3;

wire a, b, c, d;

modport master (input a, b, output c, d);

modport slave (output a, b, input c, d);

endinterface

i3 ch1(), ch2();

modport master2 (ch1.master, ch2.master);

endinterface

This example Added to document on January 27.
Page 80 sub-bullet 13.7 :

module mod1(input int in, output int out);

intf_mutex mutex();

5. The BNF – Annex A
This Section refers to the BND described in Annex A pages 91-117 in the Accellera publications. Most of the proposed changes come to solve redundant rules or small typos.

Following are the proposed changes :

Annex A

Formal Syntax

(Normative)

The formal syntax of SystemVerilog is described using Backus-Naur Form (BNF). The conventions used are:

— Keywords and punctuation are in bold text.

— Syntactic categories are named in non-bold text.

— A vertical bar ( | ) separates alternatives.

— Square brackets ( [ ] ) enclose optional items.

— Braces ( { } ) enclose items which may be repeated zero or more times.

The full syntax and semantics of Verilog and SystemVerilog are not described solely using BNF. The normative

text description contained within the chapters of the IEEE 1364-2001 Verilog standard and this System-

Verilog document provide additional details on the syntax and semantics described in this BNF.

A.1 Source text

A.1.1 Library source text

library_text ::= { library_descriptions }

library_descriptions ::=

library_declaration

| include_statement

| config_declaration

library_declaration ::=

library library_identifier file_path_spec [ { , file_path_spec } ]
[ -incdir file_path_spec [ { , file_path_spec } ] ] ;

No need to put square brackets ( [ ] ) around braces – making an item, repeated zero or more times, optional is redundant.

This issue is labeled as SV-BC-19-3 and was accepted on 11/11/02. This issue is filed as ETF issue  #136.
file_path_spec ::= file_path

include_statement ::= include <file_path_spec> ;
A back tick ( ` ) should come before the include directive.

This issue was labeled as SV-BC-19-4 and was dropped on 11/11/02
A.1.2 Configuration source text

config_declaration ::=

config config_identifier ;

design_statement

{config_rule_statement}

endconfig

design_statement ::= design { [library_identifier.]cell_identifier } ;

config_rule_statement ::=

default_clause liblist_clause

| inst_clause liblist_clause

| inst_clause use_clause

| cell_clause liblist_clause

| cell_clause use_clause

default_clause ::= default

inst_clause ::= instance inst_name

inst_name ::= topmodule_identifier{.instance_identifier}

cell_clause ::= cell [ library_identifier.]cell_identifier

liblist_clause ::= liblist [{library_identifier}]
No need to put square brackets ( [ ] ) around braces – making an item, repeated zero or more times, optional is redundant

This issue is labeled as SV-BC-19-5 and was accepted on 11/11/02. This issue is filed as ETF issue  #136.
.

use_clause ::= use [library_identifier.]cell_identifier[:config]

A.1.3 Module and primitive source text

source_text ::= [ timeunits_declaration ] { description }

description ::=

module_declaration

| udp_declaration

| module_root_item

| statement

module_declaration ::=

{ attribute_instance } module_keyword module_identifier [ parameter_port_list ]

[ list_of_ports ] ; [ timeunits_declaration ] { module_item }

endmodule

| { attribute_instance } module_keyword module_identifier [ parameter_port_list ]

[ list_of_port_declarations ] ; [ timeunits_declaration ] { non_port_module_item }

endmodule

In case of a module declaration that isn’t followed by neither a port list nor a port declaration list then the module declaration should be parsed using the second rule. 

This issue is labeled as SV-BC-19-6 and was accepted on 11/25/02. This issue is filed as ETF issue  #155 (passed 11/18/02).

module_keyword ::= module | macromodule

interface_declaration ::=

{ attribute_instance } interface interface_identifier [ parameter_port_list ]

[ list_of_ports ] ; [ timeunits_declaration ] { interface_item }

endinterface [: interface_identifier]

| { attribute_instance } interface interface_identifier [ parameter_port_list ]

[ list_of_port_declarations ] ; [ timeunits_declaration ] { non_port_interface_item }

endinterface [: interface_identifier]

In case of a interface declaration that isn’t followed by neither a port list nor a port declaration list then the interface declaration should be parsed using the second rule.

This issue is labeled as SV-BC-19-7 and was accepted on 11/25/02.

timeunits_declaration ::=

timeunit time_literal ;

| timeprecision time_literal ;

| timeunit time_literal ;

timeprecision time_literal ;

| timeprecision time_literal ;

timeunit time_literal ;

A.1.4 Module parameters and ports

parameter_port_list ::= # ( parameter_declaration { , parameter_declaration } )

list_of_ports ::= ( port { , port } )

list_of_port_declarations ::=

( port_declaration { , port_declaration } )

| ( )

port ::=

[ port_expression ]

| . port_identifier ( [ port_expression ] )

port_expression ::=

port_reference

| { port_reference { , port_reference } }
The outer braces ( {} ) should be in bold in order to enable concatenated ports (same as the IEEE 1364-2001 standard)

This issue is labeled as SV-BC-19-8 and was accepted on 11/11/02.

port_reference ::=

port_identifier

| port_identifier [ constant_expression ]
| port_identifier [ range_expression ]
port_declaration ::=

{ attribute_instance } inout_declaration

| { attribute_instance } input_declaration

| { attribute_instance } output_declaration

| { attribute_instance } interface_port_declaration

A.1.5 Module items

module_common_item ::=

{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } interface_instantiation

module_item ::=

port_declaration ;

| non_port_module_item

module_or_generate_item ::=

{ attribute_instance } parameter_override

| { attribute_instance } continuous_assign

| { attribute_instance } gate_instantiation

| { attribute_instance } udp_instantiation

| { attribute_instance } module_instantiation

| { attribute_instance } initial_construct

| { attribute_instance } always_construct

| { attribute_instance } combinational_statement

| { attribute_instance } latch_statement

| { attribute_instance } ff_statement

| module_common_item

module_root_item ::=

{ attribute_instance } module_instantiation

| { attribute_instance } local_parameter_declaration

| interface_declaration

| module_common_item

module_or_generate_item_declaration ::=

net_declaration

| data_declaration

| event_declaration

| genvar_declaration

| task_declaration

| function_declaration

non_port_module_item ::=

{ attribute_instance } generated_module_instantiation

| { attribute_instance } local_parameter_declaration

| module_or_generate_item

| { attribute_instance } parameter_declaration ;

| { attribute_instance } specify_block

| { attribute_instance } specparam_declaration

| module_declaration

parameter_override ::= defparam list_of_defparam_assignments ;

OPEN This issue is labeled as SV-BC-66 and ETF#12, and was send for E-mail voting on 02/11/03. 

A.1.6 Interface items

interface_or_generate_item ::=

{ attribute_instance } continuous_assign

| { attribute_instance } initial_construct

| { attribute_instance } always_construct

| { attribute_instance } combinational_statement

| { attribute_instance } latch_statement

| { attribute_instance } ff_statement

| { attribute_instance } local_parameter_declaration

| { attribute_instance } parameter_declaration ;

| module_common_item

| { attribute_instance } modport_declaration

interface_item ::=

port_declaration ;
| non_port_interface_item

A semi-colon (;) is missing after the port declaration

This issue is labeled as SV-BC-19-9 and was accepted on 11/11/02. 

non_port_interface_item ::=

{ attribute_instance } generated_interface_instantiation

| { attribute_instance } local_parameter_declaration

| { attribute_instance } parameter_declaration ;

| { attribute_instance } specparam_declaration

| interface_or_generate_item

| interface_declaration

The syntactic categories “parameter_declaration” and “local_parameter_declaration” can be parsed by parsing the “interface_or_generate_item” syntactic category

This issue is labeled as SV-BC-19-10 and was accepted on 11/11/02. 

A.2 Declarations

A.2.1 Declaration types

A.2.1.1 Module parameter declarations

local_parameter_declaration ::=

localparam [ signing ] { packed_dimension } [ range ] list_of_param_assignments ;

| localparam data_type list_of_param_assignments ;

parameter_declaration ::=

parameter [ signing ] { packed_dimension } [ range ] list_of_param_assignments

| parameter data_type list_of_param_assignments

| parameter type list_of_type_assignments

The word “type” should be in bold – it is a keyword.

This issue is labeled as SV-BC-54-1, was accepted on 01/29/03.

specparam_declaration ::=

specparam [ range ] list_of_specparam_assignments ;

A.2.1.2 Port declarations

inout_declaration ::= inout [ port_type ] list_of_port_identifiers

input_declaration ::= input [ port_type ] list_of_port_identifiers

output_declaration ::=

output [ port_type ] list_of_port_identifiers

| output data_type list_of_variable_port_identifiers
interface_port_declaration ::=

interface list_of_interface_identifiers

| interface . modport_identifier list_of_interface_identifiers

| interface_identifier list_of_interface_identifiers

| interface_identifier . modport_identifier list_of_interface_identifiers

The token identifier is not a keyword therefore it should not be printed in bold text

This issue is labeled as SV-BC-19-11 and was accepted on 11/11/02. 

A new item was sent by E-mail – the identifier token should be replaced with the token interface_identifier. The item was still not added to the issue list.

Was accepted on 12/20/02 (E-mail vote) (SV-BC-27).

A.2.1.3 Type declarations

block_data_declaration ::=

block_variable_declaration

| constant_declaration

| type_declaration

constant_declaration ::= const data_type const_assignment ;

data_declaration ::=

variable_declaration

| constant_declaration

| type_declaration

event_declaration ::= event list_of_event_identifiers ;

genvar_declaration ::= genvar list_of_genvar_identifiers ;
net_declaration ::=

net_type [ signing ]

[ delay3 ] list_of_net_identifiers ;

| net_type [ drive_strength ] [ signing ]

[ delay3 ] list_of_net_decl_assignments ;

| net_type [ vectored | scalared ] [ signing ]

{ packed_dimension } range [ delay3 ] list_of_net_identifiers ;

| net_type [ drive_strength ] [ vectored | scalared ] [ signing ]

{ packed_dimension } range [ delay3 ] list_of_net_decl_assignments ;

| trireg [ charge_strength ] [ signing ]

[ delay3 ] list_of_net_identifiers ;

| trireg [ drive_strength ] [ signing ]

[ delay3 ] list_of_net_decl_assignments ;

| trireg [ charge_strength ] [ vectored | scalared ] [ signing ]

{ packed_dimension } range [ delay3 ] list_of_net_identifiers ;

| trireg [ drive_strength ] [ vectored | scalared ] [ signing ]

{ packed_dimension } range [ delay3 ] list_of_net_decl_assignments ;

type_declaration ::=

typedef data_type type_declaration_identifier ;

| typedef interface_identifier { [ constant_expression ] } . type_identifier

type_declaration_identifier ;

I’m not sure what the original intention was however one of the following fixes is needed

1. No need to put square brackets ( [ ] ) around braces – making an item, repeated zero or more times, optional is redundant. – Any way this doesn’t look right

2. The brackets should be in bold indicating brackets in the RTL.

OPEN This issue is labeled as SV-BC-19-12.
block_variable_declaration ::=

[ lifetime ] data_type list_of_variable_identifiers ;

| lifetime data_type list_of_variable_decl_assignments ;

variable_declaration ::=

[ lifetime ] data_type list_of_variable_identifiers_or_assignments ;

lifetime ::= static | automatic

A.2.2 Declaration data types

A.2.2.1 Net and variable types

data_type ::=

integer_vector_type [ signing ] { packed_dimension } [ range ]

| integer_atom_type [ signing ] { packed_dimension }

| type_declaration_identifier { packed_dimension }
| non_integer_type

| struct [ packed ] [ signing ] { { struct_union_member } } { packed_dimension }
| union [ packed ] [ signing ] { { struct_union_member } } { packed_dimension }
| enum [ integer_type [ signing ] { packed_dimension } ]

{ enum_identifier [ = constant_expression ] { , enum_identifier [ = constant_expression ] } }
| void
disabling the declerations of packed integer type dimensions such as


integer [31:0] aint;

This issue is labeled as SV-BC-55 ,was accepted on 29/01/03.

OPEN This issue is labeled as SV-BC-19-17a and SV-BC62b, were sent for E-mail voting on 02/11/03.
integer_type ::= integer_vector_type | integer_atom_type

integer_atom_type ::= byte | char | shortint | int | longint | integer

integer_vector_type ::= bit | logic | reg

non_integer_type ::= time | shortreal | real | realtime | $built-in

net_type ::= supply0 | supply1 | tri | triand | trior | tri0 | tri1 | wire | wand | wor

port_type ::=

data_type { packed_dimension }
| net_type [ signing ] { packed_dimension }

| trireg [ signing ] { packed_dimension }

| event

| [ signing ] { packed_dimension } range

The port_type syntactic category already parses the packed dimensions if needed how ever the optional packed dimension addition in this rule will enable illegal port declarations such as: “output integer [10:0] a;”

This issue is labeled as SV-BC-19-13 and was accepted on 11/25/02.

signing ::= [ signed ] | [ unsigned ]
The square brackets are not needed due to the fact that every rule that parses the “signing” token already encloses the token with square brackets.

This issue is labeled as SV-BC-19-14 and was accepted on 11/11/02. 

simple_type_or_number ::= simple_type | number

simple_type ::= integer_type | non_integer_type | type_identifier

struct_union_member ::= data_type list_of_variable_identifiers_or_assignments ;

A.2.2.2 Strengths

drive_strength ::=

( strength0 , strength1 )

| ( strength1 , strength0 )

| ( strength0 , highz1 )

| ( strength1 , highz0 )

| ( highz0 , strength1 )

| ( highz1 , strength0 )

strength0 ::= supply0 | strong0 | pull0 | weak0

strength1 ::= supply1 | strong1 | pull1 | weak1

charge_strength ::= ( small ) | ( medium ) | ( large )

A.2.2.3 Delays

delay3 ::= # delay_value | #( mintypmax_expression [,                 

mintypmax_expression [, mintypmax_expression]]) 

delay2 ::= # delay_value | #( mintypmax_expression [, 
                mintypmax_expression]) 
delay_value ::= unsigned_number 
     
| real_number 
              | identifier 

Parsing the mintypmax_expression syntactic category (with out braces) and the identifier tokens are redundant (the mintypemax expression parses the identifiers)

Also the brackets are needed to avoid ambiguity when parsing the fallowing blocking assignments:


out = #delay ++ data; // can be interpreted as a = #(delay++) data; or a = #delay (++data);

See section 7.2 for more information

This issue is labeled as SV-BC-19-15 and was accepted on 11/25/02. This issue is filed as ETF issues  #63,174. (My original proposal has been changed to fit the ETF proposal)

A.2.3 Declaration lists

 list_of_defparam_assignments ::= defparam_assignment { , defparam_assignment }

OPEN This issue is labeled as SV-BC-66 and ETF#12, and was send for E-mail voting on 02/11/03. 

list_of_event_identifiers ::= event_identifier [ unpacked_dimension { unpacked_dimension }]
{ , event_identifier [ unpacked_dimension { unpacked_dimension }] }

The suggested rule is equivalent to the original rule but is simpler.
This issue is labeled as SV-BC-19-16 and was accepted on 11/11/02. This issue is filed as ETF issue  #193

list_of_genvar_identifiers ::= genvar_identifier { , genvar_identifier }

list_of_interface_identifiers ::= interface_identifier { unpacked_dimension }

{ , interface_identifier { unpacked_dimension } }

list_of_net_decl_assignments ::= net_decl_assignment { , net_decl_assignment }

list_of_net_identifiers ::= net_identifier [ unpacked_dimension { unpacked_dimension }]
{ , net_identifier [ unpacked_dimension { unpacked_dimension }] }

The suggested rule is equivalent to the original rule but is simpler.

This issue is labeled as SV-BC-19-17 and was accepted on 11/11/02. This issue is filed as ETF issue  #193

list_of_modport_port_identifiers ::= port_identifier { , port_identifier }
OPEN This issue is labeled as SV-BC-60, was send for E-mail voting on 02/11/03. 

list_of_param_assignments ::= param_assignment { , param_assignment }

list_of_port_identifiers ::= port_identifier { unpacked_dimension }

{ , port_identifier { unpacked_dimension } }

list_of_udp_port_identifiers ::= port_identifier { , port_identifier }

list_of_specparam_assignments ::= specparam_assignment { , specparam_assignment }

list_of_type_assignments ::= type_assignment { , type_assignment }

list_of_variable_decl_assignments ::= variable_decl_assign_identifier { , variable_decl_assign_identifier }

list_of_variable_identifiers ::= variable_declaration_identifier { , variable_declaration_identifier }

list_of_variable_identifiers_or_assignments ::=

list_of_variable_decl_assignments

| list_of_variable_identifiers

list_of_variable_port_identifiers ::= port_identifier { unpacked_dimension } [ = constant_expression ]

{ , port_identifier { unpacked_dimension } [ = constant_expression ] }

A.2.4 Declaration assignments

const_assignment ::= const_identifier = constant_expression

net_decl_assignment ::= net_identifier = expression

param_assignment ::= parameter_identifier = constant_param_expression

specparam_assignment ::=

specparam_identifier = constant_mintypmax_expression

| pulse_control_specparam

type_assignment ::= type_identifier = data_type

pulse_control_specparam ::=

PATHPULSE$ = ( reject_limit_value [ , error_limit_value ] ) ;

| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor

= ( reject_limit_value [ , error_limit_value ] ) ;

error_limit_value ::= limit_value

reject_limit_value ::= limit_value

limit_value ::= constant_mintypmax_expression

defparam_assignment ::= hierarchical_parameter_identifier = constant_expression

OPEN This issue is labeled as SV-BC-66 and ETF#12, and was send for E-mail voting on 02/11/03. 

A.2.5 Declaration ranges

unpacked_dimension ::= [ dimension_constant_expression : dimension_constant_expression ]
packed_dimension ::= [ dimension_constant_expression : dimension_constant_expression ]
range ::= [ msb_constant_expression : lsb_constant_expression ]
A.2.6 Function declarations

function_declaration ::=

function [ automatic ] [ signing ] [ range_or_type ]

[ interface_identifier . ] function_identifier ;

{ function_item_declaration }

{ function_statement }

endfunction [ : function_identifier ]

| function [ automatic ] [ signing ] [ range_or_type ]

[ interface_identifier . ] function_identifier ( function_port_list ) ;

{ block_item_declaration }

{ function_statement }

endfunction [ : function_identifier ]

The function declaration is problematic the following declarations can be parsed

 function signed void foo1(...);  

            can all function types be signed - non integer type signals (real , time ...)

            can not be signed however non integer type functions can ?

  function signed bit unsigned foo2(...); 



Is this function signed or not?
OPEN This issue is labeled as SV-BC-19-17a, was sent for E-mail voting on 02/11/03.
function_item_declaration ::=

block_item_declaration

| { attribute_instance } input_declaration ;

| { attribute_instance } output_declaration ;

| { attribute_instance } inout_declaration ;

function_port_item ::=

{ attribute_instance } input_declaration

| { attribute_instance } output_declaration

| { attribute_instance } inout_declaration
| { attribute_instance } port_type list_of_port_identifiers
  function_item_declaration ::= 
                block_item_declaration 
                | { attribute_instance } tf_input_declaration ; 
                | { attribute_instance } tf_output_declaration ; 
                | { attribute_instance } tf_inout_declaration ; 
  function_port_item ::= 
                { attribute_instance } tf_input_declaration 
                | { attribute_instance } tf_output_declaration 
                | { attribute_instance } tf_inout_declaration 

| { attribute_instance } port_type list_of_port_identifiers

OPEN This issue is labeled as SV-BC-35 was sent for E-mail voting on 02/11/03.

function_port_list ::= function_port_item { , function_port_item }

This change is needed to support function default port types as described in page 40 of the System-Verilog LRM. This will enable the parsing of function declarations such as :

“function logic [15:0] myfunc3(int a, int b, output logic [15:0] u, v);”
This issue is labeled as SV-BC-19-18 was accepted on 01/15/03 – The original proposal was changed and now disables the parsing of a port with out any type declaration (This was my AR from the 11/25/02 meeting)

function_prototype ::= function function_data_type ( list_of_function_proto_formals )
This production is never used

named_function_proto ::= function function_data_type function_identifier ( list_of_function_proto_formals )

OPEN This issue is labeled as SV-BC-19-17a, was sent for E-mail voting on 02/11/03.

OPEN This issue is labeled as SV-BC-60, was send for E-mail voting on 02/11/03. 

list_of_function_proto_formals ::=

[ { attribute_instance } function_proto_formal { , { attribute_instance } function_proto_formal } ]

function_proto_formal ::=

input data_type [ variable_declaration_identifier ]

| inout data_type [ variable_declaration_identifier ]

| output data_type [ variable_declaration_identifier ]

| variable_declaration_identifier

range_or_type ::=

{ packed_dimension } range

| function_data_type

OPEN This issue is labeled as SV-BC-19-17a, was sent for E-mail voting on 02/11/03.
function_data_type ::= 
integer_vector_type { packed_dimension } [ range ] 
| integer_atom_type 
| type_declaration_identifier { packed_dimension } 
| non_integer_type 
| struct [packed ] {{ struct_union_member } } { packed_dimension }  
| union [ packed ] { { struct_union_member } } { packed_dimension } 
| enum [ integer_type { packed_dimension } ] 
{ enum_identifier [ = constant_expression ] 
{ , enum_identifier [ = constant_expression ] } } 
| void
OPEN This issue is labeled as SV-BC-19-17a and SV-BC62b, were sent for E-mail voting on 02/11/03.
A.2.7 Task declarations

task_declaration ::=

task [ automatic ] [ interface_identifier . ] task_identifier ;

{ task_item_declaration }

{ statement }

endtask [ : task_identifier ]

| task [ automatic ] [ interface_identifier . ] task_identifier ( task_port_list ) ;

{ block_item_declaration }

{ statement }

endtask [ : task_identifier ]

task_item_declaration ::=

block_item_declaration

| { attribute_instance } input_declaration ;

| { attribute_instance } output_declaration ;

| { attribute_instance } inout_declaration ;

task_port_list ::= task_port_item { , task_port_item }
| list_of_port_identifiers { , task_port_item }
task_port_item ::= 

{ attribute_instance } input_declaration

| { attribute_instance } output_declaration

| { attribute_instance } inout_declaration

| { attribute_instance } port_type list_of_port_identifiers
: 
task_item_declaration ::= 
                block_item_declaration 
                | { attribute_instance } tf_input_declaration ;
                | { attribute_instance } tf_output_declaration ; 
                | { attribute_instance } tf_inout_declaration ; 
 task_port_list ::= task_port_item { ',' task_port_item } 
                | list_of_port_identifiers { ',' task_port_item } 
 task_port_item ::= 
                { attribute_instance } tf_input_declaration 
                | { attribute_instance } tf_output_declaration 
                | { attribute_instance } tf_inout_declaration 
                | { attribute_instance } port_type list_of_port_identifiers
OPEN This issue is labeled as SV-BC-35 was send for E-mail voting on 02/11/03.

This change is needed to support default port types as described in page 38 of the System-Verilog LRM. This will enable the parsing of task declarations such as :

“task mytask3(a, b, output logic [15:0] u, v);”

and

“task mytask3(logic a, b, output logic [15:0] u, v);”

This issue is labeled as SV-BC-19-19 and was accepted on 11/25/02. (The original proposal was changed by adding a ‘|’ character before in the task_port_list rule.


        tf_input_declaration ::= 
                input data_type list_of_port_identifiers 
        tf_output_declaration ::= 
                output data_type list_of_port_identifiers 
        tf_inout_declaration ::= 
                inout data_type list_of_port_identifiers
OPEN This issue is labeled as SV-BC-35 was send for E-mail voting on 02/11/03.

task_prototype ::=

task ( { attribute_instance } task_proto_formal { , { attribute_instance } task_proto_formal } )

This production is never used

See P-0454 for more details – this issue was send for E-mail voting on 02/11/03.

named_task_proto ::= task task_identifier ( task_proto_formal { , task_proto_formal } )

OPEN This issue is labeled as SV-BC-60, was send for E-mail voting on 02/11/03. 

task_proto_formal ::=

input data_type [ variable_declaration_identifier ]

| inout data_type [ variable_declaration_identifier ]

| output data_type [ variable_declaration_identifier ]

A.2.8 Block item declarations

block_item_declaration ::=

{ attribute_instance } block_data_declaration

| { attribute_instance } event_declaration

| { attribute_instance } local_parameter_declaration

| { attribute_instance } parameter_declaration ;

A.2.9 Interface declarations

*** REMOVE FROM HERE ***

modport_declaration ::= modport list_of_modport_identifiers ;

modport to port
This issue is labeled as SV-BC-28 and was accepted on 12/20/02 (E-mail voting). 

list_of_modport_identifiers ::= modport_item { , modport_item }

modport_item ::= modport_identifier ( modport_port { , modport_port } )

modport_port ::=

input [port_type] port_identifier

| output [port_type] port_identifier

| inout [port_type] port_identifier

| interface_identifier . port_identifier
interface_identifier .modport_identifier

This will enable parsing nested interface modports  in such  RTLs (Based on the example at the end of 
page 70) : 
 

interface i1; 

interface i3; 

 wire a, b, c, d; 
 modport master (input a, b, output c, d); 
 modport slave (output a, b, input c, d); 
 endinterface 
 i3 ch1(), ch2(); 
 
modport master2 (ch1.master, ch2.master); 
 endinterface 

This issue is labeled as SV-BC--22-1 and was accepted on 11/25/02. 

| import_export task named_task_proto

| import_export function named_function_proto

| import_export task_or_function_identifier { , task_or_function_identifier }

Fixing a typo the syntactic category is named “named_function_proto”.

This issue is labeled as SV-BC-19-20 and was accepted on 11/25/02. 

*** REMOVE TILL HERE ***

modport_declaration  ::= 
               modport modport_item { , modport_item } ;
  modport_item ::= 
               modport_identifier ( modport_ports_declaration  { , modport_ports_declaration } )
  modport_ports_declaration ::= 
               modport_simple_ports_declaration 
             | modport_hierarchical_ports_declaration 
             | modport_tf_ports_declaration 

  modport_simple_ports_declaration ::= 
               input list_of_modport_port_identifiers 
             | output list_of_modport_port_identifiers 
             | inout list_of_modport_port_identifiers 

  modport_hierarchical_ports_declaration ::= 
               interface_instance_identifier [ [ constant_expression ] ] . modport_identifier 

  modport_tf_ports_declaration ::= 
               import_export modport_tf_port 
                               
  modport_tf_port ::= 
               task named_task_proto { , named_task_proto } 
             | function named_function_proto  { , named_function_proto } 
             | task_or_function_identifier { , task_or_function_identifier } 

------ Motivation ------ 
 1) In an hierarchical interface, modport ports can 
       themselves be from modports of interface instances. 
       And those instances can be arrayed or generated, 
       just like module instances. So rather than 

           interface_identifier . port_identifer 

       we need 

              interface_instance_identifier {[...]} 
                         . modport_identifier 

   2) The current BNF uses an ANSI-C style in modports that 
       would require repetitive declarations of direction and 
       import/export, such as, 

           modport master ( input a, 
                            input b, 
                            output c, 
                            output d, 
                            import task masterRead(), 
                            import task masterWrite() ) ; 

       but the SystemVerilog language uses a style consistent 
       with Verilog 2001, extending the ANSI-C style to 
       something like -- 

           modport master ( input a, b, 
                            output c, d, 
                            import task masterRead(), 
                                   task masterWrite() ) ; 

   3) As noted in http://www.eda.org/sv-bc/hm/0221.html 
       the [port_type] should not have been in modport_port 
       in the existing BNF. 
OPEN This issue is labeled as SV-BC-60  was send for E-mail voting on 02/11/03. 

Fixing a typo the syntactic category is named “named_function_proto”.

This issue is labeled as SV-BC-19-20 and was accepted on 11/25/02. 

import_export ::= import | export

A.3 Primitive instances

A.3.1 Primitive instantiation and instances

gate_instantiation ::=

cmos_switchtype [delay3] cmos_switch_instance { , cmos_switch_instance } ;

| enable_gatetype [drive_strength] [delay3] enable_gate_instance { , enable_gate_instance } ;

| mos_switchtype [delay3] mos_switch_instance { , mos_switch_instance } ;

| n_input_gatetype [drive_strength] [delay2] n_input_gate_instance { , n_input_gate_instance } ;

| n_output_gatetype [drive_strength] [delay2] n_output_gate_instance

{ , n_output_gate_instance } ;

| pass_en_switchtype [delay2] pass_enable_switch_instance { , pass_enable_switch_instance } ;

| pass_switchtype pass_switch_instance { , pass_switch_instance } ;

| pulldown [pulldown_strength] pull_gate_instance { , pull_gate_instance } ;

| pullup [pullup_strength] pull_gate_instance { , pull_gate_instance } ;

cmos_switch_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal ,

ncontrol_terminal , pcontrol_terminal )

enable_gate_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal , enable_terminal )

mos_switch_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal , enable_terminal )

n_input_gate_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal { , input_terminal } )

n_output_gate_instance ::= [ name_of_gate_instance ] ( output_terminal { , output_terminal } ,

input_terminal )

pass_switch_instance ::= [ name_of_gate_instance ] ( inout_terminal , inout_terminal )

pass_enable_switch_instance ::= [ name_of_gate_instance ] ( inout_terminal , inout_terminal ,

enable_terminal )

pull_gate_instance ::= [ name_of_gate_instance ] ( output_terminal )

name_of_gate_instance ::= gate_instance_identifier { range }
The token ”gate_instance_identifier” already parses the range when reducing the “arrayed_identifier” token.

This issue is labeled as SV-BC-19-21. This issue is filed as ETF issues  #112,200 (first option – the ETF suggested 2 ways to fix this errata).

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
A.3.2 Primitive strengths

pulldown_strength ::=

( strength0 , strength1 )

| ( strength1 , strength0 )

| ( strength0 )

pullup_strength ::=

( strength0 , strength1 )

| ( strength1 , strength0 )

| ( strength1 )

A.3.3 Primitive terminals

enable_terminal ::= expression

inout_terminal ::= net_lvalue

input_terminal ::= expression

ncontrol_terminal ::= expression

output_terminal ::= net_lvalue

pcontrol_terminal ::= expression

A.3.4 Primitive gate and switch types

cmos_switchtype ::= cmos | rcmos

enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1
mos_switchtype ::= nmos | pmos | rnmos | rpmos

n_input_gatetype ::= and | nand | or | nor | xor | xnor

n_output_gatetype ::= buf | not

pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0

pass_switchtype ::= tran | rtran

A.4 Module, interface and generated instantiation

A.4.1 Instantiation

A.4.1.1 Module instantiation

module_instantiation ::=

module_identifier [ parameter_value_assignment ] module_instance { , module_instance } ;

parameter_value_assignment ::= # ( list_of_parameter_assignments )

list_of_parameter_assignments ::=

ordered_parameter_assignment { , ordered_parameter_assignment }

| named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression | data_type

named_parameter_assignment ::=

. parameter_identifier ( [ expression ] )

| . parameter_identifier ( [ data_type ] )

An empty parameter assignment can be parsed using both rules

This issue is labeled as SV-BC-19-22 and was accepted on 11/25/02 (after it has been slightly changed from the original proposal)

module_instance ::= name_of_instance ( [ list_of_port_connections ] )

The token squared brackets are redundant an empty port list can be parsed by the ‘list_of_port_connections’ syntactic category when parsing the ordered port connection.

This issue is labeled as SV-BC-19-23 This issue is filed as ETF issue  #202

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
name_of_instance ::= module_instance_identifier { range }

- original production uses braces {}
The token ”module_instance_identifier” already parses the range when reducing the “arrayed_identifier” token. Also the original production enabled multiple dimensional array instantiations such as:


mymodel inst1 [10:0][3:1][77:11](port1,port2);

This issue is labeled as SV-BC-19-24. This issue is filed as ETF issues  #112,200 (first option – the ETF suggested 2 ways to fix this errata)

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
list_of_port_connections ::=

ordered_port_connection { , ordered_port_connection }

| dot_named_port_connection { , dot_named_port_connection }

| { named_port_connection , } dot_star_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [ expression ]

named_port_connection ::= { attribute_instance } . port_identifier ( [ expression ] )

Adding a space between the dot (.)  and the ‘ port_identifier’ syntactic catagory
OPEN This issue is labeled as SV-BC-66 and ETF#25, and was send for E-mail voting on 02/11/03. 

dot_named_port_connection ::=

{ attribute_instance } .port_identifier

| named_port_connection

dot_star_port_connection ::= { attribute_instance } .*

A.4.1.2 Interface instantiation

interface_instantiation ::=

interface_identifier [ parameter_value_assignment ] module_instance { , module_instance } ;

A.4.2 Generated instantiation

A.4.2.1 Generated module instantiation

generated_module_instantiation ::= generate { generate_module_item } endgenerate

generate_module_item_or_null ::= generate_module_item | ;

generate_module_item ::=

generate_module_conditional_statement

| generate_module_case_statement

| generate_module_loop_statement

| [ generate_block_identifier : ] generate_module_block

| module_or_generate_item

generate_module_conditional_statement ::=

if ( constant_expression ) generate_module_item_or_null [ else generate_module_item_or_null ]

generate_module_case_statement ::=

case ( constant_expression ) genvar_module_case_item { genvar_module_case_item }endcase

genvar_module_case_item ::=

constant_expression { , constant_expression } : generate_module_item_or_null

| default [ : ] generate_module_item_or_null

generate_module_loop_statement ::=

for ( genvar_decl_assignment ; constant_expression ; genvar_assignment )

generate_module_named_block

genvar_assignment ::=

genvar_identifier = constant_expression

| genvar_identifier assignment_operator constant_expression

| inc_or_dec_operator genvar_identifier

| genvar_identifier inc_or_dec_operator

The rule ’genvar_assignment ::= genvar_identifier = constant_expression’ is redundant to the rule ‘genvar_assignment ::= genvar_identifier assignment_operator constant_expression’ due to the fact that the assignment operator includes the equal sign (=).

This issue is labeled as SV-BC-19-25 and was accepted on 11/25/02  – The original proposal was changed by removing the unneeded ‘|’ character from the begging of the genvar assignment_rule..

genvar_decl_assignment ::=

[ genvar ] genvar_identifier = constant_expression

generate_module_named_block ::=

begin : generate_block_identifier { generate_module_item } end [ : generate_block_identifier ]

| generate_block_identifier : generate_module_block

generate_module_block ::=

begin [ : generate_block_identifier ] { generate_module_item } end [ : generate_block_identifier ]

A.4.2.2 Generated interface instantiation

generated_interface_instantiation ::= generate { generate_interface_item } endgenerate

generate_interface_item_or_null ::= generate_interface_item | ;

generate_interface_item ::=

generate_interface_conditional_statement

| generate_interface_case_statement

| generate_interface_loop_statement

| [ generate_block_identifier : ] generate_interface_block

| interface_or_generate_item

generate_interface_conditional_statement ::=

if ( constant_expression ) generate_interface_item_or_null [ else generate_interface_item_or_null ]

generate_interface_case_statement ::=

case ( constant_expression ) genvar_interface_case_item { genvar_interface_case_item } endcase

genvar_interface_case_item ::=

constant_expression { , constant_expression } : generate_interface_item_or_null

| default [ : ] generate_interface_item_or_null

generate_interface_loop_statement ::=

for ( genvar_decl_assignment ; constant_expression ; genvar_assignment )

generate_interface_named_block

generate_interface_named_block ::=

begin : generate_block_identifier { generate_interface_item } end [ : generate_block_identifier ]

| generate_block_identifier : generate_interface_block

generate_interface_block ::=

begin [ : generate_block_identifier ]

{ generate_interface_item }

end [ : generate_block_identifier ]

A.5 UDP declaration and instantiation

A.5.1 UDP declaration
udp_declaration ::=

{ attribute_instance } primitive udp_identifier ( udp_port_list ) ;

udp_port_declaration { udp_port_declaration }

udp_body

endprimitive

| { attribute_instance } primitive udp_identifier ( udp_declaration_port_list ) ;

udp_body

endprimitive

A.5.2 UDP ports

udp_port_list ::= output_port_identifier , input_port_identifier { , input_port_identifier }

udp_declaration_port_list ::= udp_output_declaration , udp_input_declaration { , udp_input_declaration }

udp_port_declaration ::=

udp_output_declaration ;

| udp_input_declaration ;

| udp_reg_declaration ;

udp_output_declaration ::=

{ attribute_instance } output port_identifier

| { attribute_instance } output reg port_identifier [ = constant_expression ]

udp_input_declaration ::= { attribute_instance } input list_of_udp_port_identifiers

udp_reg_declaration ::= { attribute_instance } reg variable_identifier

A.5.3 UDP body

udp_body ::= combinational_body | sequential_body

combinational_body ::= table combinational_entry { combinational_entry } endtable

combinational_entry ::= level_input_list : output_symbol ;

sequential_body ::= [ udp_initial_statement ] table sequential_entry { sequential_entry } endtable

udp_initial_statement ::= initial output_port_identifier = init_val ;

init_val ::= 1’b0 | 1’b1 | 1’bx | 1’bX | 1’B0 | 1’B1 | 1’Bx | 1’BX | 1 | 0

sequential_entry ::= seq_input_list : current_state : next_state ;

seq_input_list ::= level_input_list | edge_input_list

level_input_list ::= level_symbol { level_symbol }

edge_input_list ::= { level_symbol } edge_indicator { level_symbol }

edge_indicator ::= ( level_symbol level_symbol ) | edge_symbol

current_state ::= level_symbol

next_state ::= output_symbol | -

output_symbol ::= 0 | 1 | x | X

level_symbol ::= 0 | 1 | x | X | ? | b | B

edge_symbol ::= r | R | f | F | p | P | n | N | *

A.5.4 UDP instantiation

udp_instantiation ::= udp_identifier [ drive_strength ] [ delay2 ] udp_instance { , udp_instance } ;

udp_instance ::= [ name_of_udp_instance ] { range } ( output_terminal , input_terminal { , input_terminal } )

name_of_udp_instance ::= udp_instance_identifier [ range ]
The square brackets should not be in bold text the square brackets ( [ ] ) punctuations are parsed in the rule parsing the “range” token. However I think that the range in optional therefore the square brackets should not be bold.
This issue is labeled as SV-BC-19-26. This issue is filed as ETF issues  #112,200 (first option – the ETF suggested 2 ways to fix this errata). In any case the square brackets should not be in bold (They are not bold in the IEEE 1364-2001 as well pg 721)

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
A.6 Behavioral statements

A.6.1 Continuous assignment statements

continuous_assign ::= assign [ drive_strength ] [ delay3 ] list_of_net_assignments ;
list_of_net_assignments ::= net_assignment { , net_assignment }

net_assignment ::= net_lvalue = expression

A.6.2 Procedural blocks and assignments

initial_construct ::= initial statement

always_construct ::= always statement

combinational_statement ::= always_comb statement

latch_statement ::= always_latch statement

ff_statement ::= always_ff statement

The initial, always, always_comb, always_latch and always_ff keywords should be in bold.

This issue is labeled as SV-BC-42-34 and was accepted on 12/20/02 (E-mail voting). 

blocking_assignment ::=

variable_lvalue = delay_or_event_control expression

| operator_assignment

operator_assignment ::= variable_lvalue assignment_operator expression

assignment_operator ::=

= | += | -= | *= | /= | %= | &= | |= | ^= | <<= | >>= | <<<= | >>>=

nonblocking_assignment ::= variable_lvalue <= [ delay_or_event_control ] expression

procedural_continuous_assignments ::=

assign variable_assignment

| deassign variable_lvalue

| force variable_assignment

| force net_assignment

| release variable_lvalue

| release net_lvalue

function_blocking_assignment ::= variable_lvalue = expression

function_statement_or_null ::=

function_statement

| { attribute_instance } ;

variable_assignment ::= variable_lvalue = expression
operator_assignment

| inc_or_dec_expression
- This change will enable the parsing of such statements

for ( var++; var > 50; --var) …
 // using an auto operator as the step expression is currently not 



// supported

for (var +=4; var < 50; var *= 5) …

assign var++;

// procedural continuous assignment 

force var += 5;

release --var;

This issue replaces the proposals labeled as SV-BC-19-34 and SV-BC-19-65. This issue was accepted on 01/29/03.
A.6.3 Parallel and sequential blocks

function_seq_block ::=

begin [ : block_identifier { block_item_declaration } ] { function_statement } end

par_block ::=

fork [ : block_identifier ] { block_item_declaration } { statement } join [ : block_identifier ]

seq_block ::=

begin [ : block_identifier ] { block_item_declaration } { statement } end [ : block_identifier ]

A.6.4 Statements

statement ::= [ block_identifier : ] statement_item

statement_item ::=

{ attribute_instance } blocking_assignment ;

| { attribute_instance } nonblocking_assignment ;

| { attribute_instance } procedural_continuous_assignments ;

| { attribute_instance } case_statement

| { attribute_instance } conditional_statement

| { attribute_instance } inc_or_dec_expression ;
A semi-colon (;) is needed here

This issue is labeled as SV-BC-19-27 was accepted on 11/25/02. 

| { attribute_instance } function_call ;7
The rule that parses the “function_call_statement” can be found under the sub-bullet A.6.9.1.

The function call statement is needed due to the following:

1. A semi-colon (;) is needed at the end of the statement.

This issue is labeled as SV-BC-19-28 was accepted on 01/15/03. (The original proposal was changed).

| { attribute_instance } disable_statement

| { attribute_instance } event_trigger

| { attribute_instance } loop_statement

| { attribute_instance } jump_statement

| { attribute_instance } par_block

| { attribute_instance } procedural_timing_control_statement

| { attribute_instance } seq_block

| { attribute_instance } system_task_enable

| { attribute_instance } task_enable

| { attribute_instance } wait_statement

| { attribute_instance } process statement

| { attribute_instance } proc_assertion

The process keyword should be in bold.

This issue is labeled as SV-BC-42-35 and was accepted on 12/20/02 (E-mail voting). 

statement_or_null ::=

statement

| { attribute_instance } ;

function_statement ::= [ block_identifier : ] function_statement_item

function_statement_item ::=

{ attribute_instance } function_blocking_assignment ;

| { attribute_instance } function_case_statement

| { attribute_instance } function_conditional_statement

| { attribute_instance } inc_or_dec_expression ;
A semi-colon (;) is needed here

This issue is labeled as SV-BC-19-29 was accepted on 11/25/02. 

| { attribute_instance } function_call ;7
The rule that parses the “function_call_statement” can be found under the sub-bullet A.6.9.1.

The function call statement is needed due to the following:

1. A semi-colon (;) is needed at the end of the statement.

This issue is labeled as SV-BC-19-30, was accepted on 01/15/03. (The original proposal was changed). 

| { attribute_instance } function_loop_statement

| { attribute_instance } jump_statement

| { attribute_instance } function_seq_block

| { attribute_instance } disable_statement

| { attribute_instance } system_task_enable

A.6.5 Timing control statements

procedural_timing_control_statement ::=

delay_or_event_control statement_or_null

delay_or_event_control ::=

delay_control

| event_control

| repeat ( expression ) event_control

delay_control ::=

# delay_value

| # ( mintypmax_expression )

event_control ::=

@ event_identifier

| @ ( event_expression )

| @*

| @ (*)

event_expression ::=

expression [ iff expression ]

| hierarchical_identifier [ iff expression ]

| [edge_identifier  edge ] expression [ iff expression ]

| event_expression or event_expression

| event_expression , event_expression

The two rules “event_expression::= expression [iff expression]” and

 “event_expression::= hierarchical_identifier [iff expression]”are redundant due to the fact that they can be parsed using the rule “event_expression::=[edge] expression [iff expression]”

(the expression token can parse the hierarchical_identifier token)

This issue is labeled as SV-BC-19-31, was accepted on 01/15/03. This issue is partly filed as ETF issue  #182 (the removal of the hierarchical_identifier token).

The syntactic category name edge was changed from “edge” to “edge_identifier” due to the fact that the word edge is a keyword (see A.7.5.3). The keyword “changed” was dropped .

This issue is labeled as SV-BC-49-2, was accepted on 01/29/03.
edge ::= posedge | negedge | changed

The syntactic category name edge was changed from “edge” to “edge_identifier” due to the fact that the word edge is a keyword (see A.7.5.3). The keyword “changed” was dropped .

This issue is labeled as SV-BC-49-2, was accepted on 01/29/03.
jump_statement ::=

return [ expression ] ;

| break ;

| continue ;
wait_statement ::=

wait ( expression ) statement_or_null

event_trigger ::=

-> hierarchical_event_identifier ;

disable_statement ::=

disable hierarchical_task_identifier ;

| disable hierarchical_block_identifier ;

A.6.6 Conditional statements

conditional_statement ::=

[ unique_priority ] if ( expression ) statement_or_null [ else statement_or_null ]

| if_else_if_statement

if_else_if_statement ::=

[ unique_priority ] if ( expression ) statement_or_null

{ else [ unique_priority ] if ( expression ) statement_or_null }

[ else statement_or_null ]

The “statement_or_null” token takes care of the nested ifs

This issue is labeled as SV-BC-19-32 was rejected on 01/15/03. This issue is partly filed as ETF issue  #178.
function_conditional_statement ::=

[ unique_priority ] if ( expression ) function_statement_or_null [ else function_statement_or_null ]

| function_if_else_if_statement

function_if_else_if_statement ::=

[ unique_priority ] if ( expression ) function_statement_or_null

{ else [ unique_priority ] if ( expression ) function_statement_or_null }

[ else function_statement_or_null ]

The ”function_statement_or_null” token takes care of the nested ifs

This issue is labeled as SV-BC-19-33 was rejected on 01/15/03. This issue is partly filed as ETF issue  #178
unique_priority ::= unique | priority

A.6.7 Case statements

case_statement ::=

[ unique_priority ] case ( expression ) case_item { case_item } endcase

| [ unique_priority ] casez ( expression ) case_item { case_item } endcase

| [ unique_priority ] casex ( expression ) case_item { case_item } endcase

case_item ::=

expression { , expression } : statement_or_null

| default [ : ] statement_or_null

function_case_statement ::=

[ unique_priority ] case ( expression ) function_case_item { function_case_item } endcase

| [ unique_priority ] casez ( expression ) function_case_item { function_case_item } endcase

| [ unique_priority ] casex ( expression ) function_case_item { function_case_item } endcase

function_case_item ::=

expression { , expression } : function_statement_or_null

| default [ : ] function_statement_or_null

A.6.8 Looping statements

function_loop_statement ::=

forever function_statement

| repeat ( expression ) function_statement_or_null

| while ( expression ) function_statement_or_null

| for ( variable_decl_or_assignment ; expression ; variable_assignment )

function_statement_or_null

| do function_statement while ( expression ) ;
loop_statement ::=

forever statement

| repeat ( expression ) statement_or_null

| while ( expression ) statement_or_null

| for ( variable_decl_or_assignment ; expression ; variable_assignment ) statement_or_null

| do statement while ( expression ) ;
1. These changes will enable such for statements as :


for (cnt =0;cnt < 99;cnt++) …

and


for (cnt =0;cnt < 99;cnt += 1) …

See more information under section 8.2.
These changes can be replaced by the suggested change ‘variable_assignment’ production, specified underA.6.2 

This issue is labeled as SV-BC-19-34 and SV-BC-19-65 – these issues were solved by changing the variable_lvalue production (was accepted on 01/29/03).
2. The rule parsing the repeat statement was removed due to the fact that it redundant and can be parsed by the syntactic category ‘procedural_timing_control_statement’ when it parses the ‘delay_or_event_control’   syntactic category.

This issue is labeled as SV-BC-19-35. This issue is filed as ETF issue #85. The solution suggested by the ETF can be used instead of this issue.

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
3. A semi-colon was added after the do-while statements.

This issue is labeled as SV-BC-48 and was accepted on 01/15/03.

variable_decl_or_assignment ::=

data_type list_of_variable_identifiers_or_assignments ;

| variable_assignment

The semi-colon (;) should be removed using the semi-colon the following rule will be parsed


for (int a = 0 ; ; a <1;a=a+1) … // two semi-colons after the variable declaration.

This issue is labeled as SV-BC-19-36. was accepted on 12/20/02 (E-mail voting).

A.6.9 Task enable statements

system_task_enable ::= system_task_identifier [ ( [ expression ]{ , [ expression ] } ) ] ;

These changes are needed to support the “null arguments” as described in the IEEE-1364-2001 standard page278 under sub-bullet 17.1.1.This will enable the parsing of  task enables such as 


“$monitor (time ,,"set=",set);”

however an empty argument list is illegal therefore the following should not be parsed 


“$monitor();”

This issue is labeled as SV-BC-19-37 and is related to the IEEE 1364-2001 standard. This issue is filed as ETF issue #232 as:

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
task_enable ::= hierarchical_task_identifier [ ( expression { , expression } ) ] ;

A.6.10 Assertion statements

proc_assertion ::=

immediate_assert

| strobed_assert

| clocked_immediate_assert

| clocked_strobed_assert

immediate_assert ::= assert ( expression )

statement_or_null

[ else statement_or_null ]

strobed_assert ::= assert_strobe ( expression )

restricted_statement_or_null

[ else restricted_statement_or_null ]

clocked_immediate_assert ::= assert ( expr_sequence ) step_control

statement_or_null

[ else statement_or_null ]

clocked_strobed_assert ::= assert_strobe ( expr_sequence ) step_control

restricted_statement_or_null

[ else restricted_statement_or_null ]

All the clocked and non-clocked assertions were merged


proc_assertion ::=

immediate_assert

| strobed_assert

immediate_assert ::= assert ( expression ) [step_control ]
statement_or_null

[ else statement_or_null ]

strobed_assert ::= assert_strobe ( expression ) [step_control ]
restricted_statement_or_null

[ else restricted_statement_or_null ]

restricted_statement_or_null ::=

restricted_statement

| { attribute_instance } ;

restricted_statement ::=

[ block_identifier : ] restricted_statement_item

restricted_statement_item ::=

{ attribute_instance } proc_assertion

| { attribute_instance } system_task_enable

| { attribute_instance } delay_or_event_control statement

| { attribute_instance } restricted_seq_block

restricted_seq_block ::= begin [ : block_identifier ] { block_item_declaration }{ restricted_statement }

end [ : block_identifier ]

expr_sequence ::=

expression

| [ constant_expression ]
| range

| expr_sequence ; expr_sequence

| expr_sequence * [ constant_expression ]
| expr_sequence * range

| ( expr_sequence )

Squared brackets around the constant_expression should be in bold.

This issue is labeled as SV-BC-19-39, was accepted on 01/15/03. 

step_control ::=

@@ event_identifier

| @@ ( event_expression )

A.7 Specify section

A.7.1 Specify block declaration

specify_block ::= specify { specify_item } endspecify

specify_item ::=

specparam_declaration

| pulsestyle_declaration

| showcancelled_declaration

| path_declaration

| system_timing_check

pulsestyle_declaration ::=

pulsestyle_onevent list_of_path_outputs ;

| pulsestyle_ondetect list_of_path_outputs ;

showcancelled_declaration ::=

showcancelled list_of_path_outputs ;

| noshowcancelled list_of_path_outputs ;

A.7.2 Specify path declarations

path_declaration ::=

simple_path_declaration ;

| edge_sensitive_path_declaration ;

| state_dependent_path_declaration ;
simple_path_declaration ::=

parallel_path_description = path_delay_value

| full_path_description = path_delay_value

parallel_path_description ::=

( specify_input_terminal_descriptor [ polarity_operator ] => specify_output_terminal_descriptor )

full_path_description ::=

( list_of_path_inputs [ polarity_operator ] *> list_of_path_outputs )

list_of_path_inputs ::=

specify_input_terminal_descriptor { , specify_input_terminal_descriptor }

list_of_path_outputs ::=

specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

A.7.3 Specify block terminals

specify_input_terminal_descriptor ::=

input_identifier

| input_identifier [ constant_expression ]
| input_identifier [ range_expression ]
specify_output_terminal_descriptor ::=

output_identifier

| output_identifier [ constant_expression ]
| output_identifier [ range_expression ]

input_identifier ::= input_port_identifier | inout_port_identifier

output_identifier ::= output_port_identifier | inout_port_identifier

A.7.4 Specify path delays

path_delay_value ::=

list_of_path_delay_expressions

| ( list_of_path_delay_expressions )

list_of_path_delay_expressions ::=

t_path_delay_expression

| trise_path_delay_expression , tfall_path_delay_expression

| trise_path_delay_expression , tfall_path_delay_expression , tz_path_delay_expression

| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,

tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression

| t01_path_delay_expression , t10_path_delay_expression , t0z_path_delay_expression ,

tz1_path_delay_expression , t1z_path_delay_expression , tz0_path_delay_expression ,
t0x_path_delay_expression , tx1_path_delay_expression , t1x_path_delay_expression ,

tx0_path_delay_expression , txz_path_delay_expression , tzx_path_delay_expression

The fifth expression list is missing a comma between expressions 6 and 7.
OPEN This issue is labeled as SV-BC-66 and ETF#26, and was send for E-mail voting on 02/11/03. 

t_path_delay_expression ::= path_delay_expression

trise_path_delay_expression ::= path_delay_expression

tfall_path_delay_expression ::= path_delay_expression

tz_path_delay_expression ::= path_delay_expression

t01_path_delay_expression ::= path_delay_expression

t10_path_delay_expression ::= path_delay_expression

t0z_path_delay_expression ::= path_delay_expression

tz1_path_delay_expression ::= path_delay_expression

t1z_path_delay_expression ::= path_delay_expression

tz0_path_delay_expression ::= path_delay_expression

t0x_path_delay_expression ::= path_delay_expression

tx1_path_delay_expression ::= path_delay_expression

t1x_path_delay_expression ::= path_delay_expression

tx0_path_delay_expression ::= path_delay_expression

txz_path_delay_expression ::= path_delay_expression

tzx_path_delay_expression ::= path_delay_expression

path_delay_expression ::= constant_mintypmax_expression

edge_sensitive_path_declaration ::=

parallel_edge_sensitive_path_description = path_delay_value

| full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=

( [ edge_identifier ] specify_input_terminal_descriptor =>

specify_output_terminal_descriptor [ polarity_operator ] : data_source_expression )

full_edge_sensitive_path_description ::=

( [ edge_identifier ] list_of_path_inputs *>

list_of_path_outputs [ polarity_operator ] : data_source_expression )

data_source_expression ::= expression

edge_identifier ::= posedge | negedge

state_dependent_path_declaration ::=

if ( module_path_expression ) simple_path_declaration

| if ( module_path_expression ) edge_sensitive_path_declaration

| ifnone simple_path_declaration

polarity_operator ::= + | -

A.7.5 System timing checks

A.7.5.1 System timing check commands

system_timing_check ::=

$setup_timing_check

| $hold_timing_check

| $setuphold_timing_check

| $recovery_timing_check

| $removal_timing_check

| $recrem_timing_check

| $skew_timing_check

| $timeskew_timing_check

| $fullskew_timing_check

| $period_timing_check

| $width_timing_check

| $nochange_timing_check

$setup_timing_check ::=

$setup ( data_event , reference_event , timing_check_limit [ , [ notify_reg ] ] ) ;

$hold_timing_check ::=

$hold ( reference_event , data_event , timing_check_limit [ , [ notify_reg ] ] ) ;

$setuphold_timing_check ::=

$setuphold ( reference_event , data_event , timing_check_limit , timing_check_limit

[ , [ notify_reg ] [ , [ stamptime_condition ] [ , [ checktime_condition ]

[ , [ delayed_reference ] [ , [ delayed_data ] ] ] ] ] ] ) ;

$recovery_timing_check ::=

$recovery ( reference_event , data_event , timing_check_limit [ , [ notify_reg ] ] ) ;

$removal_timing_check ::=

$removal ( reference_event , data_event , timing_check_limit [ , [ notify_reg ] ] ) ;

$recrem_timing_check ::=

$recrem ( reference_event , data_event , timing_check_limit , timing_check_limit

[ , [ notify_reg ] [ , [ stamptime_condition ] [ , [ checktime_condition ]

[ , [ delayed_reference ] [ , [ delayed_data ] ] ] ] ] ] ) ;

$skew_timing_check ::=

$skew ( reference_event , data_event , timing_check_limit [ , [ notify_reg ] ] ) ;

$timeskew_timing_check ::=

$timeskew ( reference_event , data_event , timing_check_limit

[ , [ notify_reg ] [ , [ event_based_flag ] [ , [ remain_active_flag ] ] ] ] ) ;

$fullskew_timing_check ::=

$fullskew ( reference_event , data_event , timing_check_limit , timing_check_limit

[ , [ notify_reg ] [ , [ event_based_flag ] [ , [ remain_active_flag ] ] ] ] ) ;

$period_timing_check ::=

$period ( controlled_reference_event , timing_check_limit [ , [ notify_reg ] ] ) ;

$width_timing_check ::=

$width ( controlled_reference_event , timing_check_limit , threshold [ , [ notify_reg ] ] ) ;

$nochange_timing_check ::=

$nochange ( reference_event , data_event , start_edge_offset ,

end_edge_offset [ , [ notify_reg ] ] ) ;

A.7.5.2 System timing check command arguments

checktime_condition ::= mintypmax_expression

controlled_reference_event ::= controlled_timing_check_event

data_event ::= timing_check_event

delayed_data ::=

terminal_identifier

| terminal_identifier [ constant_mintypmax_expression ]
delayed_reference ::=

terminal_identifier

| terminal_identifier [ constant_mintypmax_expression ]
end_edge_offset ::= mintypmax_expression

event_based_flag ::= constant_expression

notify_reg ::= variable_identifier

reference_event ::= timing_check_event

remain_active_flag ::= constant_mintypmax_expression

stamptime_condition ::= mintypmax_expression

start_edge_offset ::= mintypmax_expression

threshold ::=constant_expression

timing_check_limit ::= expression

A.7.5.3 System timing check event definitions

timing_check_event ::=

[timing_check_event_control] specify_terminal_descriptor [ &&& timing_check_condition ]

controlled_timing_check_event ::=

timing_check_event_control specify_terminal_descriptor [ &&& timing_check_condition ]

timing_check_event_control ::=

posedge

| negedge

| edge_control_specifier
Drop the issue that was labeled as SV-BC-19-40. 
specify_terminal_descriptor ::=

specify_input_terminal_descriptor

| specify_output_terminal_descriptor

edge_control_specifier ::= edge [ edge_descriptor { , edge_descriptor } ]
OPEN This issue is labeled as SV-BC-66 and ETF#30, and was send for E-mail voting on 02/11/03. 

edge_descriptor1 ::= 01 | 10 | z_or_x zero_or_one | zero_or_one z_or_x

zero_or_one ::= 0 | 1

z_or_x ::= x | X | z | Z

timing_check_condition ::=

scalar_timing_check_condition

| ( scalar_timing_check_condition )

Assuming the next fix is correct than the brackets can be added when parsing the token expression therefore the removed rule is redundant.

This issue is labeled as SV-BC-19-41. This issue is related to the IEEE-1364 standard.. . This issue is filed as ETF issue #237.

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
scalar_timing_check_condition ::=

expression

| ~ expression

| expression == scalar_constant

| expression === scalar_constant

| expression != scalar_constant

| expression !== scalar_constant

The rules stroked out are redundant due to the fact that they all can be parsed by parsing the “expression token. The main intention might have been to use the syntactic category “primary” instead of “expression” in all the above rules in this case we wouldn’t need to strike out the specified rules. 

This issue is labeled as SV-BC-19-42. This issue is related to the IEEE-1364 standard.. . This issue is filed as ETF issue #238.

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
scalar_constant ::= 1’b0 | 1’b1 | 1’B0 | 1’B1 | ’b0 | ’b1 | ’B0 | ’B1 | 1 | 0

A.8 Expressions

A.8.1 Concatenations

concatenation ::= { expression { , expression } }
constant_concatenation ::= { constant_expression { , constant_expression } }
constant_multiple_concatenation ::= { constant_expression constant_concatenation }
module_path_concatenation ::= { module_path_expression { , module_path_expression } }
module_path_multiple_concatenation ::= { constant_expression module_path_concatenation }
multiple_concatenation ::= { constant_expression concatenation }
net_concatenation ::= { net_concatenation_value { , net_concatenation_value } }
net_concatenation_value ::=

hierarchical_net_identifier

| hierarchical_net_identifier [ expression ] { [ expression ] }

| hierarchical_net_identifier [ expression ] { [ expression ] } [ range_expression ]
| hierarchical_net_identifier [ range_expression ]
| net_concatenation

variable_concatenation ::= { variable_concatenation_value { , variable_concatenation_value } }
variable_concatenation_value ::=

hierarchical_variable_identifier

| hierarchical_variable_identifier [ expression ] { [ expression ] }

| hierarchical_variable_identifier [ expression ] { [ expression ] } [ range_expression ]
| hierarchical_variable_identifier [ range_expression ]
| variable_concatenation

Removing the concatenation products due to changes in the net_lvalue and variable_lvalue productions.

This issue was accepted on 01/29/03. This issue is also labeled under ETF#53

A.8.2 Function calls

constant_function_call ::= function_identifier { attribute_instance }

( constant_expression { , constant_expression } )

function_call ::= hierarchical_function_identifier{ attribute_instance } ( expression { , expression } )

genvar_function_call ::= genvar_function_identifier { attribute_instance }

( constant_expression { , constant_expression } )

The “genvar_function_call” semantic category is never used.

This issue is labeled as SV-BC-19-43 was accepted on 01/15/03. This issue is filed as ETF issue #28 and was accepted by the ETF.

system_function_call ::= system_function_identifier [ ( expression { , expression } ) ]

A.8.3 Expressions

base_expression ::= expression

inc_or_dec_expression ::=

inc_or_dec_operator { attribute_instance } variable_lvalue

| variable_lvalue{ attribute_instance }  inc_or_dec_operator

Adding the attribute between the operand and the inc/dec operator.

This issue is labeled as SV-BC-19-46a, was accepted on 01/29/03.

Using the previous rules the following expressions are legal 


“foo(a1,a2,a3)++”  and  “ i++ ++” 

This issue is labeled as SV-BC-19-44. This issue was solved by changing the variable_lvalue production.( , was accepted on 01/29/03).

conditional_expression ::= expression1 ? { attribute_instance } expression2 : expression3

constant_base_expression ::= constant_expression

constant_expression ::=

constant_primary

| unary_operator { attribute_instance } constant_primary

| constant_expression binary_operator { attribute_instance } constant_expression

| constant_expression ? { attribute_instance } constant_expression : constant_expression

| string

constant_mintypmax_expression ::=

constant_expression

| constant_expression : constant_expression : constant_expression

constant_param_expression ::=

constant_expression

| data_type

According to the BNF (A.2.4 and A.8.3) 
the following RTL is parseable : 
        parameter type mytype1 = int; // this is O.K. defining mytype1 is an int (see section 14.2). 
        parameter p1 = int; // Is this O.K. ? 
        parameter int p2 = long; // ??? 

The BNF : 

A.2.4 : param_assignment ::= parameter_identifier = 
constant_param_expression 

A.2.1.1 : parameter_declaration ::=

parameter [ signing ] { packed_dimension } [ range ] list_of_param_assignments

| parameter data_type list_of_param_assignments

| parameter type list_of_type_assignments

The "data_type" syntactic category should be removed. 

This issue is labeled as SV-BC-19-54-2, was accepted on 01/29/03.

constant_range_expression ::=

constant_expression

| msb_constant_expression : lsb_constant_expression

| constant_base_expression +: width_constant_expression

| constant_base_expression -: width_constant_expression

All rules that parse the “constant_range_expression” token already parse the “constant_expression” token.

This issue is labeled as SV-BC-19-45. This issue is related to the IEEE-1364 standard. This issue is filed as ETF issue #238.

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
dimension_constant_expression ::= constant_expression

expression1 ::= expression

expression2 ::= expression

expression3 ::= expression

expression ::=

primary

| unary_operator { attribute_instance } primary

| { attribute_instance } inc_or_dec_expression

| ( operator_assignment )

| expression binary_operator { attribute_instance } expression

| conditional_expression

| string

The Attribute was removed from the” inc_or_dec_expression” syntactic category due to the fact that this is a built in conflict with in the language. For Example lets assume the following blocking assignment :


lhs =op1 - (* attribute *) op2++;

the attribute can refer to the minus (‘-‘) binary operator or to the ‘++’ auto-increment operator.

My suggestion is to locate the attribute in-between the operand and the operator such as

lhs = op1 (* auto_inc_attribute   *) ++  * -- (* auto_dec_attribute *) op2;

Using the following BNF:


expression ::=

| inc_or_dec_expression

inc_or_dec_expression ::=

inc_or_dec_operator { attribute_instance }  variable_lvalue_item

| variable_lvalue_item { attribute_instance }  inc_or_dec_operator
See more information under section 7.4.
This issue (removing the optional attribute instance from the begging of the inc_or_dec_expression)  is labeled as SV-BC-19-46 and SV-BC-19-63, was accepted on 01/15/03.

Issue SV-BC-19-46a deals with if an attribute on ++ / -- operators should be permitted (and where should it be located)

lsb_constant_expression ::= constant_expression

mintypmax_expression ::=

expression

| expression : expression : expression

module_path_conditional_expression ::= module_path_expression ? { attribute_instance }

module_path_expression : module_path_expression

module_path_expression ::=

module_path_primary

| unary_module_path_operator { attribute_instance } module_path_primary

| module_path_expression binary_module_path_operator { attribute_instance }

module_path_expression

| module_path_conditional_expression

module_path_mintypmax_expression ::=

module_path_expression

| module_path_expression : module_path_expression : module_path_expression

msb_constant_expression ::= constant_expression

range_expression ::=

expression

| msb_constant_expression : lsb_constant_expression

| base_expression +: width_constant_expression

| base_expression -: width_constant_expression

All rules that parse the “range_expression” token already parse the “expression” token.

This issue is labeled as SV-BC-19-47. This issue is related to the IEEE 1364-2001 standard. . This issue is filed as ETF issue #238.

VSG/PS - Desiccation of the SV-BC meeting from 1/15/93 was to pass the VSG resolution.
width_constant_expression ::= constant_expression

A.8.4 Primaries

constant_primary ::=

constant_concatenation

| constant_function_call

| ( constant_mintypmax_expression )

| constant_multiple_concatenation

| genvar_identifier

| number

| parameter_identifier

| specparam_identifier

| time_literal 

| ’0 | ’1 | ’z | ’Z | ’x | ’X

The rule constant_primary ::= time_literl is problematic here is it  causes an  ambiguousness  when trying to parse


and #1 ms(a,b,c)

this can be interpreted as an unnamed and gate instance with a delay of 1 microsecond or an and gate named ms instance with a delay of 1 time unit.

See more information under section 7.3.

This issue is labeled as SV-BC-19-48 and SV-BC-19-62 (and also similar to SV-BC-19-51).

These issues were dropped on 01/15/03 due to the fact that the ambiguity is solved by the fact that white spaces are not permitted between the number and the time unit. (See section 2.5 Time-Literals in the LRM  ). 

The new proposal is to add a footnote for the ‘time_literal’ production..

module_path_primary ::=

number

| identifier

| module_path_concatenation

| module_path_multiple_concatenation

| function_call

| system_function_call

| constant_function_call

| ( module_path_mintypmax_expression )

primary ::=

number

| hierarchical_identifier

| hierarchical_identifier [ expression ] { [ expression ] }

| hierarchical_identifier [ expression ]{ [ expression ] } [ range_expression ]

| hierarchical_identifier [ range_expression ]

| hierarchical_identifier { [ expression ] } [ [ range_expression ] ]
This is a simpler way to write the four previous rules that were stroke out.

This issue is labeled as SV-BC-19-4, was accepted on 01/29/03. This issue is filed as ETF issue #181.

| concatenation

| multiple_concatenation

| function_call

| system_function_call

| constant_function_call

| ( mintypmax_expression )

| { expression { , expression } }

| { expression { expression } }

The concatenation operator ( {...} ) and replication operator ( {…{…} } ) are redundant due to the fact that they are already parsed using the “multiple_concatenation” and “concatenation” tokens.

This issue is labeled as SV-BC-19-50 was accepted on 01/29/03.

| simple_type_or_number ’ ( expression )

| simple_type_or_number ’ { expression { , expression } }
| simple_type_or_number ’ { expression { expression } }
| time_literal
| ’0 | ’1 | ’z | ’Z | ’x | ’X

The rule primary ::= time_literl is problematic here is it  causes an  ambiguousness  when trying to parse


and #1 ms(a,b,c)

this can be interpreted as an unnamed and gate instance with a delay of 1 microsecond or an and gate named ms instance with a delay of 1 time unit.
See more information under section 7.3.
This issue is labeled as SV-BC-19-51 and SV-BC-19-62 (and also similar to SV-BC-19-48).

These issues were dropped on 01/15/03 due to the fact that the ambiguity is solved by the fact that white spaces are not permitted between the number and the time unit. (Ssee section 2.5 Time-Literals in the LRM  )

The new proposal is to add a footnote for the ‘time_literal’ production..

time_literal9 ::=

unsigned_number time_unit

| fixed_point_number time_unit

A foot note should be added to clarify that a white space is illegal –hit link to footnote
This issue replaces the issues labeled as SV-BC-19-51, SV-BC-19-62, and SV-BC-19-48. This issue was accepted on 01/29/03.

time_unit ::= s | ms | us | ns | ps | fs

A.8.5 Expression left-side values

net_lvalue ::=

hierarchical_net_identifier

| hierarchical_net_identifier [ constant_expression ] { [ constant_expression ] }

| hierarchical_net_identifier [ constant_expression ] { [ constant_expression ] }

[ constant_range_expression ]

| hierarchical_net_identifier [ constant_range_expression ]

| hierarchical_net_identifier { [ constant_expression ] } [ [ constant_range_expression ] ]
This is a simpler way to write the four previous rules that were stroke out.

This issue is labeled as SV-BC-19-49 (original was SV-BC-19-52) . This issue is filed as ETF issue #181 and accepted as part of ETF # 53 (ETF # 53 passed). was accepted on 01/29/03.

net_lvalue ::=

hierarchical_net_identifier {[constant_expression]} 

<bold []>

[ [constant_range_expression] ] 


<internal [] in bold>
| { net_lvalue { , net_lvalue } }

<external {} in bold> <bold ,>

| hierarchical_net_identifier ( [ constant_expression { , constant_expression } ] )

In what case can brackets appear in the left hand side of an assignment ? 

Is this legal “assign  ident(exp1,exp2) = 1’b1;” ? The original intention might have been functions returning values by reference or functions returning some kind of pointer.

This issue is labeled as SV-BC-19-53. was accepted on 01/29/03.

| net_concatenation
| { net_lvalue { , net_lvalue } 
Also under A.8.1  eliminate the following productions: 

- net_concatenation 
- net_concatenation_value
Disables the use of a non-constant index operation is a net_lvalue or a variable_lvalue using a concatenation operator. This illegal indexing is demonstrated :

mynet[index] = 1; 

// this is illegal

{ mynet[index] } = 1; 

// this is legal according to the BNF.

This issue is not labeled in the SV-BC list, it is labeled as part of ETF # 53. Was accepted on 01/29/03.

variable_lvalue ::=

variable_lvalue_item  [ inc_or_dec_operator ]
a inc_or_dec_operator can not appear in the LHS of an assignment.

This issue was accepted on 01/29/03.
| hierarchical_variable_identifier ( [ constant_expression { , constant_expression } ] )

In what case can brackets appear in the left hand side of an assignment ? 

Is this legal ”ident(exp1,exp2) = 1’b1;” ? The original intention might have been functions returning values by reference or functions returning some kind of pointer.

This issue is labeled as SV-BC-19-54, was accepted on 01/29/03.

| hierarchical_variable_identifier { [ expression ] } [ [ range_expression ] ]
This is a simpler way to write the four previous rules that were stroke out (from variable_lvalue_item .

This issue is labeled as SV-BC-19-55 was accepted on 01/29/03. This issue is filed as ETF issue #181 and as part of ETF # 53

| '{' variable_lvalue { ',' variable_lvalue } '}' 
Also under A.8.1 eliminate the following productions: 

- variable_concatenation 
- variable_concatenation_value 
This issue is not labeled in the SV-BC list, it is labeled as part of ETF # 53. This issue was accepted on 01/29/03.

variable_lvalue_item ::=

hierarchical_variable_identifier

| hierarchical_variable_identifier [ expression ] { [ expression ] }

| hierarchical_variable_identifier [ expression ] { [ expression ] } [ range_expression ]

| hierarchical_variable_identifier [ range_expression ]
| hierarchical_variable_identifier { [ expression ] } [ [ range_expression ] ]
This is a simpler way to write the four previous rules that were stroke out.

This issue is labeled as SV-BC-19-55. This issue is filed as ETF issue #181and as part of ETF # 53 (ETF # 53 passed).

| variable_concatenation
| '{' variable_lvalue { ',' variable_lvalue } '}' 
Also under A.8.1 eliminate the following productions: 

- variable_concatenation 
- variable_concatenation_value 
This issue is not labeled in the SV-BC list, it is labeled as part of ETF # 53.

The variable_lvalue_item production was merged into the variable_lvalue production.

This issue was accepted on 01/29/03. 

A.8.6 Operators

unary_operator ::=

+ | - | ! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_operator ::=

+ | - | * | / | % | == | != | === | !== | && | || | **
| < | <= | > | >= | & | | | ^ | ^~ | ~^ | >> | << | >>> | <<<

inc_or_dec_operator ::= ++ | --

unary_module_path_operator ::=

! | ~ | & | ~& | | | ~| | ^ | ~^ | ^~

binary_module_path_operator ::=

== | != | && | || | & | | | ^ | ^~ | ~^

A.8.7 Numbers

number ::=

decimal_number

| octal_number

| binary_number

| hex_number

| real_number

decimal_number ::=

unsigned_number

| [ size ] decimal_base unsigned_number

| [ size ] decimal_base x_digit { _ }

| [ size ] decimal_base z_digit { _ }

binary_number ::= [ size ] binary_base binary_value

octal_number ::= [ size ] octal_base octal_value

hex_number ::= [ size ] hex_base hex_value

sign ::= + | -

size ::= non_zero_unsigned_number

non_zero_unsigned_number1 ::= non_zero_decimal_digit { _ | decimal_digit}

real_number1 ::=

fixed_point_number

| unsigned_number [ . unsigned_number ] exp [ sign ] unsigned_number

fixed_point_number1 ::= unsigned_number . unsigned_number

exp ::= e | E

unsigned_number1 ::= decimal_digit { _ | decimal_digit }

binary_value1 ::= binary_digit { _ | binary_digit }

octal_value1 ::= octal_digit { _ | octal_digit }

hex_value1 ::= hex_digit { _ | hex_digit }

decimal_base1 ::= ’[s|S]d | ’[s|S]D

binary_base1 ::= ’[s|S]b | ’[s|S]B

octal_base1 ::= ’[s|S]o | ’[s|S]O

hex_base1 ::= ’[s|S]h | ’[s|S]H

non_zero_decimal_digit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

binary_digit ::= x_digit | z_digit | 0 | 1

octal_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

hex_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | f | A | B | C | D | E | F

x_digit ::= x | X
z_digit ::= z | Z | ?

A.8.8 Strings

string ::= " { Any_ASCII_Characters_except_new_line } "

A.9 General

A.9.1 Attributes

attribute_instance ::= (* attr_spec { , attr_spec } *)

attr_spec ::=

attr_name = constant_expression

| attr_name

attr_name ::= identifier

A.9.2 Comments

comment ::=

one_line_comment

| block_comment

one_line_comment ::= // comment_text \n

block_comment ::= /* comment_text */

comment_text ::= { Any_ASCII_character }

A.9.3 Identifiers

arrayed_identifier ::=

simple_arrayed_identifier

| escaped_arrayed_identifier

block_identifier ::= identifier

cell_identifier ::= identifier

config_identifier ::= identifier

const_identifier ::= identifier

enum_identifier ::= identifier

escaped_arrayed_identifier ::= escaped_identifier [ range ]
The square brackets should not be in bold text the square brackets ( [ ] ) punctuations are parsed in the rule parsing the “range” token. However I think that the range in optional therefore the square brackets should not be bold.

This issue is labeled as SV-BC-19-56, was accepted on 01/15/03. They are not bold in the IEEE 1364-2001 page 733.

escaped_hierarchical_identifier4 ::=

escaped_hierarchical_branch { .simple_hierarchical_branch | .escaped_hierarchical_branch }

escaped_identifier ::= \ {any_ASCII_character_except_white_space} white_space

event_identifier ::= identifier

function_identifier ::= identifier

gate_instance_identifier ::= arrayed_identifier

generate_block_identifier ::= identifier

genvar_function_identifier ::= identifier8
The “genvar_function_call” semantic category is never used.

This issue is labeled as SV-BC-19-43 was accepted on 01/15/03. This issue is filed as ETF issue #28 and was accepted by the ETF.

genvar_identifier ::= identifier

hierarchical_block_identifier ::= hierarchical_identifier

hierarchical_event_identifier ::= hierarchical_identifier

hierarchical_function_identifier ::= hierarchical_identifier

hierarchical_identifier ::=

simple_hierarchical_identifier

| escaped_hierarchical_identifier

hierarchical_net_identifier ::= hierarchical_identifier

hierarchical_parameter_identifier ::= hierarchical_identifier
OPEN This issue is labeled as SV-BC-66 and ETF#12, and was send for E-mail voting on 02/11/03. 

hierarchical_variable_identifier ::= hierarchical_identifier

hierarchical_task_identifier ::= hierarchical_identifier

identifier ::=

simple_identifier

| escaped_identifier

interface_identifier ::= identifier

interface_instance_identifier ::=  identifier
OPEN This issue is labeled as SV-BC-60  was send for E-mail voting on 02/11/03. 

inout_port_identifier ::= identifier

input_port_identifier ::= identifier

instance_identifier ::= identifier

library_identifier ::= identifier

memory_identifier ::= identifier

OPEN This issue is labeled as SV-BC-66 and ETF#21, and was send for E-mail voting on 02/11/03. 

modport_identifier ::= identifier

module_identifier ::= identifier

module_instance_identifier ::= arrayed_identifier

net_identifier ::= identifier

output_port_identifier ::= identifier

parameter_identifier ::= identifier

port_identifier ::= identifier

real_identifier ::= identifier

simple_arrayed_identifier ::= simple_identifier [ range ]
The square brackets should not be in bold text the square brackets ( [ ] ) punctuations are parsed in the rule parsing the “range” token. However I think that the range in optional therefore the square brackets should not be bold.

This issue is labeled as SV-BC-19-57, was accepted on 01/15/03. They are not bold in the IEEE 1364-2001 page 734.
simple_hierarchical_identifier3 ::= simple_hierarchical_branch [ .escaped_identifier ]

simple_identifier2 ::= [ a-zA-Z_ ] { [ a-zA-Z0-9_$ ] }

specparam_identifier ::= identifier

state_identifier ::= identifier

system_function_identifier5 ::= $[ a-zA-Z0-9_$ ]{ [ a-zA-Z0-9_$ ] }

system_task_identifier5 ::= $[ a-zA-Z0-9_$ ]{ [ a-zA-Z0-9_$ ] }

task_or_function_identifier ::= task_identifier | function_identifier

task_identifier ::= identifier

terminal_identifier ::= identifier

text_macro_identifier ::= simple_identifier

topmodule_identifier ::= identifier

type_declaration_identifier ::= type_identifier { packed_dimension }

type_identifier ::= identifier

udp_identifier ::= identifier

udp_instance_identifier ::= arrayed_identifier

variable_decl_assign_identifier ::= variable_identifier { unpacked_dimension } [ = constant_expression ]

variable_declaration_identifier ::= variable_identifier { unpacked_dimension }

variable_identifier ::= identifier

A.9.4 Identifier branches

simple_hierarchical_branch3 ::=

simple_identifier { [ expression ] } [ { . simple_identifier { [expression] } } ]

escaped_hierarchical_branch4 ::=

escaped_identifier { [expression] } [ { . escaped_identifier { [expression] } } ]

These changes are needed to enable expressions with in select indexes of hierarchical identifiers. According to the BNF the following example is illegal:

typedef struct {logic field1,int field2} pair;

module mymodule(…);

parameter p1 = 127;

pair mypair [p1:0] ;

mypair[0].field1 = 1’b1; // this is legal due to the fact that the index ‘0’ is an unsigned number

mypair[p1].field1 = 1’b1; // this is illegal due to the fact that the index p1 is not an unsigned number

mypair[0+1].field1 = 1’b1; // this is also illegal 

int cnt;

always @*

for (cnt =2;cnt < p1;cnt = cnt + 1)


mypair[cnt].field1 = 1’b0; // this is also illegal

endmodule

See section 0 8.5 for more information.

This issue is labeled as SV-BC-19-58 an SV-BC-19-68. They are partly relevant to the IEEE 1364-2001 standard by accessing arrayed sub modules using the hierarchical_identifier however in System-Verilog the hierarchical_identifier is used to access fields of struct or union arrays.

Delayed due to the fact that the ETF is discussing similar issues.
A.9.5 White space

white_space ::= space | tab | newline | eof6
NOTES

1) Embedded spaces are illegal.

2) A simple_identifier and arrayed_reference shall start with an alpha or underscore (_) character, shall

have at least one character, and shall not have any spaces.

OPEN This issue is labeled as SV-BC-66 and ETF#32, and was send for E-mail voting on 02/11/03. 

3) The period (.) in simple_hierarchical_identifier and simple_hierarchical_branch shall not be preceded

or followed by white_space.

4) The period in escaped_hierarchical_identifier and escaped_hierarchical_branch shall be preceded by

white_space, but shall not be followed by white_space.

5) The $ character in a system_function_identifier or system_task_identifier shall not be followed by

white_space. A system_function_identifier or system_task_identifier shall not be escaped.

6) End of file.

7) Must be a void function

any function can be called – the return value will be avoided. 

This issue is labeled as SV-BC-27. This issue was accepted on 29/01/03.

8) Hierarchy is not allowed

9) The unsigned_number or fixed_point_number in time_literal shall not be followed by a white space.
A foot note should be added to clarify that a white space is illegal 

This issue replaces the issues labeled as SV-BC-19-51, SV-BC-19-62, and SV-BC-19-48. This issue was accepted on 29/01/03.

10)  void functions, non integer type functions, and functions with a typedef type cannot have a signing declaration.
OPEN This issue is labeled as SV-BC-19-17a, was sent for E-mail voting on 02/11/03.
Other Issues
6. Keywords – Annex B

6.1. “transition” and “endtransition” keywords

The keyword “transition” and “endtransition” are defined in Annex B however they are not used in the BNF nor are they mentioned in the rest of the Accellera publication.

This issue is labeled as SV-BC-19-59. Was accepted on 12/20/02 (E-mail voting).

6.2. “edge”  keyword

The word “edge” should be added to the keyword list in Annex B it is used under A.7.5.3 in the rule that parses the “edge_control_specifier” syntactic category.

This issue labeled as SV-BC-49-1 issue list, was accepted on 01/29/03.
7. Lingual features to be removed

7.1. Generic bondless with in interface body port declaration 

OPEN This issue is labeled as SV-BC-19-60.
Use of generic interface bundles (see page 68 in the Accellera standard for definition) as ports of an interface will only be supported if declared as a "list of port declarations" (ANSI style port lists) with in the interface header. The use of generic interface bundles as interface ports will not be supported if they are declared in the body of the interface (V95 style).

The following RTL will not be supported:

interface myint1 (port1);

interface port1; // this will not be supported and will yield with a syntax error

endinterface : myint1 

...

// the rest of the code is not a part of the limitation just comes to show the use of generic interface bundles with in an interface

interface myint2();

logic clk;

endinterface : myint2

module a();

myint2 i2;

myint1 i1(.port1(i2));

son myson(i1);

endmodule

module son(myint1 myport);

wire a;

assign a = myport.port1.clk; 

endmodule

However this RTL will still be supported

// generic interface bundles as MODULE ports

module myint1 (port1);

interface port1; // this is O.K.

endmodule
or
module myint1 (interface  port1);

endmodule

// generic interface bundles as interface ports with in the list of port declarations  in the // interface header

interface myint1 (interface  port1);

       endmodule : myint1 

The main reason for changing the definition can be seen in the following RTL :

interface a ( ... );

interface b ;

interface c;

interface d( ... );

interface e ;

interface f ;

endinterface

endinterface
endinterface
It is very hard to match the endinteface's to the begging of the interface declaration - for example these two RTLs are legal.

RTL 1

interface a ( b,c );

interface b ;

interface c;

interface d( e );

interface e ;

interface f ;

endinterface: f

endinterface: d

endinterface: a

RTL 2

interface a ( b );

interface b ;

interface c;

interface d( e,f );

interface e ;

interface f ;

endinterface: d

endinterface: c

endinterface: a

7.2. Complex Expressions as delay values.

This issue is labeled as SV-BC-19-61 same as the item labeled as SV-BC-19-15 was accepted on 11/25/02.
The use of complex expression as delay values will be permuted only if the expression is with in braces (). Simple identifiers and numbers do not have to be wrapped with braces. The following RTL Examples will be considered illegal:


out1 = #delay1+delay2 data;


out2 = #delay++ data;

out3 = #1+1 data;

However the following will be supported:


out1 = #(delay1+delay2) data;


out2 = #(delay++) data;

out2 = #delay(++ data);

out3 = #2 data;

out4 =#delay data;

This limitation comes to solve an ambiguous definition of the System-Verilog definition for such statements:


out2 = #delay++data; // 
the ++ can be associated with both the data and delay 

value

7.3. Removal of time literals from the expression definition.

This issue is labeled as SV-BC-19-62 same as the item labeled as SV-BC-19-48 and 51, was dropped on 01/15/03.
Time literals will not be supported as expressions.

The following RTL samples will be considered illegal.

time t1 = 1 ms;

and #(1 ps) (out,in1,in2);

It can be considered to support time literals as expression only if they are imbedded with in braces (). In this case the following example will be supported


and #(1 ps) (out,in1,in2);

However the use of time literals in time precision definition will still be supported:


timeunit 1 ns;

timeprecision 1fs;

This limitation comes to solve an ambiguous definition of the System-Verilog definition for such statements:

and #1 ps (out,in1,in2); // 
the word ‘ps’ can refer to the and gate instance name 

or to the delay time precision.


out = #1 ps + data; // 

can be interpreted as out = #(1 ps) (+ data);  






or as #(1) (ps + data);

7.4. Attributes describing auto-increment and auto-decrement operators

This issue is labeled as SV-BC-19-63. In labeled as SV-BC-19-46 and SV-BC-19-46a
The auto-increment (++) and auto-decrement (--) operators will not be able to receive attributes the reason for this limitation is the ambiguity in the lingual definition for such an RTL;

out = a - (* attribute *) b++;

In this case the attribute can refer to the binary minus operator or to the auto-increment operator as one of the following:

out = a – ( (* attribute *) b++) ;

out = a - (* attribute *) b; b = b +1;

Maybe it would be better to locate the attribute between the operand and the operator such as: 

out1 = a - b (* attribute *) ++;

out2 = a - ++ (* attribute *) b;

8. Lingual features to be added

8.1. Empty port lists in function declarations and function calls

OPEN This issue is labeled as SV-BC-19-64.
Functions with out any ports will be supported including function calls with empty ports lists and function definitions with empty port lists. The following RTL examples will be supported.

function foo(); // function definition

...

endfunction

…

foo() // function call

The Suggested changes in the BNF (under section A.2.6 and A.8.2 and ) need to support such a feature are :

function_declaration ::= 

function [ automatic ] [ signing ] [ range_or_type ]

[ interface_identifier . ] function_identifier ;

{ function_item_declaration }

{ function_statement }

endfunction [ : function_identifier ]

            | function [ automatic ] [ signing ] [ range_or_type ]

[ interface_identifier . ] function_identifier ( [ function_port_list ] ) ;

{ block_item_declaration }

{ function_statement }

endfunction [ : function_identifier ]

function_prototype ::= function data_type ( [ list_of_function_proto_formals ] )

named_function_proto::= function data_type function_identifier 

( [ list_of_function_proto_formals ] )

constant_function_call ::= function_identifier { attribute_instance }

( [ constant_expression { , constant_expression } ] )

function_call ::= hierarchical_function_identifier{ attribute_instance }

 ( [ expression { , expression } ] )

genvar_function_call ::= genvar_function_identifier { attribute_instance }

( [ constant_expression { , constant_expression } ] )
8.2. Use of auto operators with in a for loop step

This issue is labeled as SV-BC-19-65 same as the item labeled as SV-BC-19-34.
The use of auto increment/decrement operators (++/--) and auto-assignment operators    (+= , -= …) will be permitted with in the third statement of the for loop header (the statement defining the loop step). The following RTL examples will be supported :

for (counter = 0;counter < 100; counter++ ) …

for (counter = 0;counter < 100; counter += 1) …

The Suggested changes in the BNF (under section A.6.8 ) need to support such a feature are (the changes are already embedded in section 5):

function_loop_statement ::=

forever function_statement

| repeat ( expression ) function_statement_or_null

| while ( expression ) function_statement_or_null

| for ( variable_decl_or_assignment ; expression ; for_variable_assignment )

function_statement_or_null

| do function_statement while ( expression )

loop_statement ::=

forever statement

| repeat ( expression ) statement_or_null

| while ( expression ) statement_or_null

| for ( variable_decl_or_assignment ; expression ; for_variable_assignment ) statement_or_null

| do statement while ( expression )

for_variable_assignment ::=


operator_assignment


| inc_or_dec_expression
8.3. parameter declaration with in the global name-space (under $ROOT)

OPEN This issue is labeled as SV-BC-19-66.
The declaration of parameters under the global name space will be permitted as show in the following RTL :


<beginning of file>


parameter p1 = 1;

module m1(…);


…

The Suggested changes in the BNF (under section A.1.5 ) need to support such a feature are:

module_root_item ::=

{ attribute_instance } module_instantiation

| { attribute_instance } local_parameter_declaration

| { attribute_instance } parameter_declaration ;
| interface_declaration

| module_common_item
8.4. default initialization of unpacked structs (and other data types)

OPEN This issue is labeled as SV-BC-19-67.
Default literal assignment will be supported as shown in the following RTL examples:


wire [10:0] a [1:0]


assign a = { default:0 }

This RTL will be equivalent to the following RTL:


wire [10:0] a [11:0];


assign a[0] = '0;


assign a[1] = '0;
The System-Verilog 3.0 draft provides the ability to specify unpacked, structure literals.  These structure literals must account for each element of the structure type.  While this is functional, it is certainly not convenient.  For large, unpacked structures, structure literals become intractable.  To accommodate large unpacked structures, additional syntax is required.  This syntax must allow coverage of a large number of fields with relatively few keystrokes, all without needing to detail each member field or memory layout.

Before proceeding into syntactic suggestions, consider packed structures.

To initialize all of the members of the following packed struct:

typedef struct packed {

 logic a1;

 logic a2;

 ...

 logic aN;

} ps_t;

ps_t c,d;

to a simple constant or expression, then only a simple assignment is required:

c = '0;

or

d = {$bits(d){1'b1}};

Now consider unpacked structures such as:

typedef struct {

 logic a1;

 logic a2;

 ...

 logic aN;

} ups_t;

ups_t uc,ud,ue;

In order to assign one of these structs to a simple constant or expression

much heavy lifting is required.

1) The literal must be completely aware of the structure type:

uc = {0,0,...0};

2) There are no means for programmatically simplifying the expression

-$bits does not apply to unpacked structures and

-There are no means for querying unpacked structure type information.

So how can unpacked structures be assigned to a constant?

1) Casting

uc = ups_t'('0);

The downside to this is that the type must be known at all.

This requires type parameters and type hard-coding in module and functions.

2) Enhanced literal syntax

uc = {<keyword>:'value};

Where `value would be assigned to each field of uc.  This provides better control than simply casting a constant and has the extra benefit of being type neutral.

Keyword suggestions include: all, each and default.

Finally, consider a more realistic usage model:

always @(posedge clk)

  if (reset) begin
    uc <= {each:'0};

    ud <= ups_t'('0);

  end else if (set) begin

    uc <= {each:'1};

    ud <= ups_t'('1);

  end else begin

    uc <= ue;

    ud <= ue;

  end

In order for unpacked structures to be used more seamlessly, and potentially modularly, it is important to enable more convenient unpacked structure literals.

Of the suggestions, casting and enhanced literal syntax, Intel prefers the enhanced syntax.

In order to support such a change we suggest that the following rule should be added to the BNF (under sub-bullet A.8.4)


primary ::= { keyword : constant_primary }

keyword stand for one of the following - all, each or default.

8.5. hierarchical identifier selects with expressions as indexes

This issue is labeled as SV-BC-19-68 same as the item labeled as SV-BC-19-58.

Waiting for ETF decissions
The use of any expression with in the selectors of the hierarchical identifier will be permitted as shown in the following RTL:


typedef struct {wire b1} s1;


module m1(…);


s1[1:0] mys1;


reg r1,r2;


assign mys1[r1 + 1 – r2] = 1’b1;

The Suggested changes in the BNF (under section A.9.4 ) need to support such a feature are (the changes are already embedded in section 5):


simple_hierarchical_branch3 ::=

simple_identifier { [ expression ] } [ { . simple_identifier { [expression] } } ]

escaped_hierarchical_branch4 ::=

escaped_identifier { [expression] } [ { . escaped_identifier { [expression] } } ]

8.6. Use of a single direction declaration in modport declarations

OPEN This issue is labeled as SV-BC-19-69.

Brad suggests a different suggestion under SV-BC-60.
According to the BNF the following is not legal

modport control (input a,b); 

Currently the only way to do this is re-declaring the port direction: 

modport control (input a, input  b); 

It would be more convenient to use the same conventions used for modules port lists.

The Suggested changes in the BNF (under section A.2.9 ) need to support such a feature are :

modport_port ::=

input [port_type] port_identifier

| output [port_type] port_identifier

| inout [port_type] port_identifier
input_decleration
| output_declaration // this is not 100% the same as output [port_type]
| inout_declaration
| interface_identifier . port_identifier

| import_export task named_task_proto

| import_export function named_function_proto

| import_export task_or_function_identifier { , task_or_function_identifier }

	02/14/2003
	Dan Jacobi – Intel Corp.
	2/48



