
&ODULILFDWLRQ�IRU�69�%&���K�DQG���L�
Rev 0.2

�����,QIRUPDWLYH����QG� SDUDJUDSK�
OLD:
See section 3.3.1.
New
See sections 3.3.1 and 5.6.

�����,QIRUPDWLYH���UG�SDUDJUDSK�
OLD:
Verilog 2001 constants are literals, parameters, localparams and specparams. Verilog 2001 also has
variables and nets. Variables must be written by procedural statements, and nets must be written by
continuous assignments or ports.

NEW:
Verilog 2001 constants are literals, parameters, localparams and specparams. Verilog 2001 also has
variables and nets. Variables must be written by procedural statements, and nets must be driven by
continuous assignments or ports. SystemVerilog extends the functionality of variables by allowing them to
either be written by procedural statements or driven by a single continuous assignment. For legacy
behavior, a UHJ variable retains its Verilog-2001 functionality, whereas a ORJLF variable is its
SystemVerilog replacement.

����1HWV��UHJV��DQG�2WKHU�9DULDEOHV�
Replace with:

In Verilog 2001, a net can only be written by one or more continuous assignments, primitive outputs or
through module ports. The resultant value of multiple drivers is determined by the resolution function of
the net type. If a net on one side of a port is driven by a variable on the other side, a continuous assignment
is implied. A IRUFH statement can override the value of a net. When released, it returns to resolved value.

Verilog 2001 also states that only procedural statements can write to UHJ variables, including procedural
continuous assignments. The last write determines the value. The IRUFH statement overrides the
procedural assign statement, which in turn overrides the normal assignments. A UHJ variable cannot be
written through a port, it must go through an implicit continuous assignment to a net.

In SystemVerilog, all data types except UHJ can be written either by one continuous assignment, or by one
or more procedural statements, including procedural continuous assignments. It shall be an error to have
multiple continuous assignments or a mixture of procedural and continuous assignments writing to the
same variable. All data types except UHJ may write through a port

SystemVerilog variables may be packed or unpacked aggregates of other types. The assignments made to
each element of a variable are independently examined using the longest static prefix rules. (See section
TDB- SV-BC21) [Note: This will define an assignment like a[i] = expr; to be treated as an assignment to
all elements of an array] It shall be an error to have a packed structure or array type written with a mixture
of procedural and continuous assignments. Thus, an unpacked structure or array can have one element
assigned procedurally, and another element assigned continuously. And, each element of a packed structure
or array may each have a single continuous assignment. For example, assume the following structure
declaration

VWUXFW�^�
� ELW�>���@�$��
� ELW�>���@�%��
� FKDU�&��
` DEF��

The following statements are legal assignments to struct abc:

DVVLJQ�DEF�&� �VHO�"��¶K%(����¶K()��
QRW�DEF�$>�@�DEF�%>�@����DEF�$>�@�DEF�%>�@����DEF�$>�@�DEF�%>�@���
�DEF�$>�@�DEF�%>�@���
DOZD\V�#�SRVHGJH�FON��DEF�%�� �DEF�%������

The following additional statements are illegal assignments to struct abc:
 ���0XOWLSOH�FRQWLQXRXV�DVVLJQPHQWV�WR�DEF�&�
DVVLJQ�DEF�&� �VHO�"��¶K'(����¶K('���
���0L[LQJ�FRQWLQXRXV�DQG�SURFHGXUDO�DVVLJQPHQWV�WR�DEF�$�
DOZD\V�#�SRVHGJH�FON��DEF�$>���@�� ��DEF�%>���@���

For the purposes of the preceding rule, a declared variable initialization or a procedural continuous
assignment is considered a procedural assignment. A IRUFH statement is neither a continuous or
procedural assignment. A UHOHDVH statement will not change the variable until there is another procedural
assignment, or a continuous assignment re-evaluates. A single IRUFH or UHOHDVH statement shall not be
applied to a whole or part of a variable that is being assigned by a mixture of continuous and procedural
assignments.

A continuous assignment is implied when a variable is connected to an LQSXW port declaration.
Assignments to variable declared as an LQSXW port are illegal. A continuous assignment is implied when a
variable is connected the RXWSXW port of an instance. Assignments to a variable connected to the RXWSXW
port of an instance are illegal.

SystemVerilog variables of the same type may be connected to both sides of an LQRXW port. In that case,
variables on both the instance and declaration side of the LQRXW port are treated as if they are a single
variable. Procedural assignments may be made to either side of an LQRXW�port; last write wins.
Continuous assignments may be made to different elements of a variable on either side of an LQRXW port.
See section 12.8 (port connection rules) for more information about port connection rules.

The compiler may issue a warning if a continuous assignment drives a strength other then St0, St1, StX, or
HiZ.

Note that a SystemVerilog type cannot have an implicit continuous assignment as part of its declaration, the
way a net data type can. An assignment as part of the logic declaration is a variable initialization, not a
continuous assignment. For example:
 ZLUH�Z� �YDUD�	�YDUE�����FRQWLQXRXV�DVVLJQPHQW�
ORJLF�Y� �FRQVWD�	�FRQVWE�����LQLWLDO�DVVLJQPHQW��FDQ�KDYH�RWKHU�
SURFHGXUDO�DVVLJQPHQWV�
ORJLF�O�����QR�LQLWLDO�DVVLJQPHQW�
DVVLJQ�O� �YDUD�	�YDUE�����FRQWLQXRXV�DVVLJQPHQW�WR�D�ORJLF�
UHDO�FLUF��
DVVLJQ�FLUF� �����
�3,�
�5�����FRQWLQXRXV�DVVLJQPHQW�WR�D�UHDO�
�

	Clarification for SV-BC 18h and 18i
	3.1 (Informative) 2nd paragraph
	5.1 (Informative) 3rd paragraph
	5.6 Nets, regs, and Other Variables

