
1 CADENCE DESIGN SYSTEMS, INC.

Cadence Technical Analysis of
System Verilog

DECEMBER 2002

2

ØCriteria for Language Critique/Design

• Critique of Existing LRM/Donations

• Recommendations Moving Forward

Outline

3

Criteria - Goals of Language ExtensionCG

• Types of Changes

– Higher level of design abstraction

– Advanced Verification Methodologies

– Encourage reusable design/verification

• Characteristics to Preserve

– Refinement of Abstract -> RTL -> Gate

– High-Performance Event-driven simulation semantics

– Synthesizability of modeled components

4

Criteria – Retain Style Of Verilog 1364CV

For Better or Worse – Verilog …

• Implicitly declares objects

• Allows use before declaration

• Passes parameters as copy-in, copy-out

• Does limited/no/deferred type checking

• Performs implicit type coercions (reg to wire assignment for
instance)

• Permits/Encourages global scope and visibility (allowance of
Out-Of-Module-References)

5

Criteria – Scalability/InteroperabilityCS

• Language should define basic building blocks

• Same concept in different language extensions should use the
same building blocks

• Reuse of building blocks creates a scalable philosophy on how
to extend the language

• Macro concepts specific to a tool or technology should be
modeled with these building blocks, not added as a new
language feature

6

Criteria - Backward CompatibilityCB

• Consistency with Verilog 2001

• Tons of Verilog code no one ever wants to touch again must be
syntactically legal without modification

• Keywords must be treated as VERY precious items and added
only when absolutely necessary

• Semantics must be strictly compatible – old designs must
continue to work

• Don’t add new ways of doing things that are already possible

7

Criteria – Decomposition/RefinementCD

Issue Peculiar to HDL’s

• Devices are remodeled/refined at many levels

– Detail is added for refinement of implementation

– Detail is removed for model abstraction and performance

• Interface to the device should remain as constant/reusable as
possible

• Testbenches should be reusable across these modeling levels

• Due to SOC/block-based design at some level a system-level
model is indistinguishable from a testbench

8

• Criteria for Language Critique/Design

ØCritique of Existing LRM/Donations

• Recommendations Moving Forward

Outline

9

Data Types - GoalsCG

• Expand modeling abstraction

– 2-state types, enums, records, unions, etc.

• Provide more robust simple interface to ‘C’

– Short, char, int, real, …..

• Permit composite structural interconnect

– Pass something other than 4-state bits on wires

– Define a whole set of ports required for a device or protocol

• Create dynamically allocated structures in test benches

10

Data Types - Logic

• After meaning was clarified in sv-bc, no new semantics are present-CB

• More general extension is to allow regs to be ports without a wire+CS

– accomplishes the same thing

– If combined with type extensions to regs, gives structural interconnect+CS

• Current restrictions on assignments from different scopes are a remote
elaboration-time error-CD

– makes re-use difficult

– makes IP legal in one context but not another

– author of module has no control, only users of module

• SDF Back-annotation to procedurally assigned interconnect is
completely undefined to date-CD

11

Data Types - Composite Structures

• Three answers in three places -CS

– SV 3.0 has allowed structs/unions except wires can not take on these types

– Interfaces added to allow structural interconnect, behaviorally assigned

– VeraLite classes extend composites way beyond current capabilities and
language style

• Difference solutions for different language components prohibit
decomposition and refinement -CD

– As implementation moves from Interface to RTL, ports must be remodeled

– Testbench for system-level description using interfaces can not be reused
against implementation in RTL

12

Data Types - References/Pointers

• Requirements appear to be:CG

– Interoperability w/ ‘C’

– Pass by reference to System Verilog (or ‘C’)

– Verification data structure creation (scoreboards, lists, hashes)

• Massive potential negative impact on simulation performanceCG

• If allowed, must be severely restricted w.r.t:CG

– Sensitivity

– Kinds of objects they can point to

– Timing controls in tasks to which they have been passed

13

Data Types – Higher-level Structures
(lists, queues, fifo, hashes, assoc. arrays,
mailboxes, semaphores, …)
• Are these fundamental language constructs or should the language be

modified so that these can be modeled? CG,CS

• Option 1 - Fundamental Constructs

– New keywords, operators for each one-CB

– Where does it end? -CS

– List, Stack, Tree, Balanced Tree, Lattice, Graph

– Statistics gathering may be required for verification (queue length, time empty, time full, etc.)
(i.e. 0-in CheckerWare Library)

• Option 2 - References/Pointers

– Functionality would have to be restricted CG

– Users probably want implicit allocation/deallocation (new, garbage collect) +CV

– May be separable into portion of the language explicitly for verification (mimic region
like specify block but for verification) CG

• Cadence believes adding dynamic allocation in tightly controlled regions
provides the fundamental building block for all higher-level structures +CV

14

New Features - $root

• Didn’t we learn our lesson with compiler directives? -CV

– (i.e. a lot of time being spent to make `timescale local)

• Incredible potential for non-determinism -CD

– Global scope leads to name collisions

– incorrect interpretation as IP is reused

– File ordering could lead to incorrect, undetectable interpretation

• Top-level modules can accomplish the same thing +CS

– Create a module with the global information +CV

– Use an Out-of-module reference to get to it +CV

– Possibly add an attribute indicating a module should be at the root +CS

– If users insist, add something like a ‘use’ or ‘with’ statement to shorten
syntax of reference to hierarchical names -CV

15

New Features - Interfaces
Lumps un-related concepts in one construct

• Structural interconnect with direction
– Very incompletely defined (completely by example) -CV

– Does not decompose well vis-à-vis SDF Backannotation -CD

– Should be a general extension of ports and structs +CS

• Task-level abstraction
– Most of this already exists in Verilog 2001 -CV

– Good proposed extensions to explicitly export from a module +CD

– Multiple users of the interface each need a unique driver. These are note created by
the task calls making it unusable for refinement as specified -CD

• Parameterized-hierarchical reference +CD, +CV

– Cool concept but is simply passing a reference to a module instance hierarchically

– Adding module names as a form of parameter would solve same problem without
new construct

16

New Features - Redundant Additions
Add no new functionality, just keywords

• Alias statement (just clarify semantics of feed through module) -CV

• Always_{ff, latch} add no semantic content -CV

– should be attributes from IEEE on the always block +CS

– Where does this end as new restrictions evolve -CS

– Not a sustainable language extension (expands keywords linearly) -CS

• Unsized literal bit values (in 2001) -CV

• Constants (Verilog has them already) -CV

• “unique” and “priority” should be synthesis attributes -CS

• Iff –CV, -CS

• Nested Modules –CV, -CS

17

New Features – Functions/Tasks

• Function inout and out ports -CV

– Previously disallowed intentionally

– Allows functions to have side effects

– Creates need for default type and direction of formal arguments

• Functions as statements -CV

– already have tasks

– creates need for the void type

• This brings in a feature from ‘C’ which does not have a separate
task/function distinction into a language that does -CV

18

New Features - Verilog 2001 Conflicts

• ‘static’ keyword was rejected by IEEE -CV

– Needed static variable can always be promoted to enclosing scope

– IEEE spent a huge amount of time debating this and rejected it, why
is it being revisited? A huge waste of energy.

• Always @(*) vs. always_comb –CV, -CS

– Minor variation in semantics should be migrated to one construct

– Separate event control from assignment semantics

• Variable initialization does not cause events -CV

• Contradiction on semantics of posedge/negedge of multi-
bit objects -CV

19

C-Interfaces
Need for 3 interfaces identified

• Simple, fast access to ‘C’ (nice progress lately) +CG

– Useful for algorithms written in ‘C’

– Useful to perform things hard in Verilog (sockets, I/O)

– Parameters are only access Verilog objects

• Handle-based interface to language constructs – VPI +CG

– All new language extensions must have equivalent VPI +CV

– This definition should not be left to later

– Can actually clarify data-model of new constructs

• C++ hierarchy, interconnect, processes +CG, +CV

– Any coordination with C++ models should be compatible with SystemC
rather than invent new C++ classes for hierarchy and interconnect.

20

C-Interfaces - Coverage

• ‘C’-level access to coverage statements should be a VPI
extension, not a new API -CV

• Are we modifying the language every time a verification
methodology is used to process it? -CS

– Application or methodology specific information can be added to a
design via attributes +CV,+CS

– Behavioral extensions can typically be done through $tasks() +CV,+CS

• Great opportunity for adjunct standard +CG

– Standardize $task names

– Standardize set of attributes

21

C-Interfaces – Assertion API

• How can this be done in any detail until the Assertion Committee
results are known?

• If Assertions become a part of the core language then this entire
mechanism should just be extensions to VPI to access the new
language constructs. +CV,+CS

– New properties for static traversal to find them

– New values relating to assertion state

– New callback types for interacting with them at runtime

• Existing requirements document is completely insufficient -CG

– http://www.eda.org/sv-cc/requirements/assertions_requirements.doc

22

VeraLite Donation

• 3 documents in play are difficult to reconcile -CG

– Original donation

– Clarification document (and presentation)

– Latest randomization/constraint proposal (donation?, approved?)

• Position as new language vs Verilog extension is even more
unclear than status of SystemVerilog -CV

• At a minimum constraints and assertions need to be unified -CS

23

Committee Ping Pong
These need cross-committee resolution

• References, pointers – sv-cc, sv-ec

• Structures, classes, interfaces – sv-bc, sv-ec, sv-cc

• Assertions, API – sv-ac, sv-cc

• Enumeration Types – sv-ec, sv-bc

24

• Criteria for Language Critique/Design

• Critique of Existing LRM/Donations

ØRecommendations Moving Forward

Outline

25

Recommendations – Data Types
Fundamental Re-Evaluation Necessary

• New System Verilog 3.1 requirements have made System
Verilog 3.0 decisions obsolete

– More robust interaction with ‘C’ code

– Possible addition of references/pointers

– Structural interconnect

• Orthogonal treatment of object class and object type

– Class (reg, wire, logic, var) vs Type (4-state, 2-state, enum, struct)

– Would need some semantic restrictions (references)

– Difficult (but not impossible) backward compatibility

• Required for interoperability of testbench, abstract design, RTL
design, and gate-level implementation

26

Recommendations – Language
Fundamentals

• For Better or Worse, Verilog …

– Implicitly declares objects

– Allows use before declaration

– Does limited/no/deferred type checking

– Performs implicit type coercions

– Permits/Encourages global scope and visibility (allowance of Out-Of-Module-
References)

• Are we going to change these fundamentals?

• Maybe we follow like ‘C’/C++ with a well-defined distinction for:

– Object-Oriented extensions

– Classes

– Inheritance

– Type Templates

27

Recommendations - Process

• Re-evaluate speed of standardization process vs. quality of
resulting standard

• Restructure overlapping/entangled responsibilities of technical
committees to resolve technical problems where global
consideration is needed

• Take into consideration amount of rework at IEEE level and
identify portions destined for IEEE

• Formal documentation on goals of extensions and language
design style

• Need for revised LRM/Proposals with change bars

– Document resolved SystemVerilog 3.0 issues

– Incorporate “clarifications” to donations

28

Recommendations – Summary

• SystemVerilog is solving the right problems

– Modeling at more abstract levels

– Adding verification technologies

– Encouraging reusable/robust design and verification

• Goal should be scalable additions

– Limit keywords

– Provide building blocks for abstract concepts

• Keep style of Verilog-1364 intact

– Ensure backward compatibility

– Extensions beyond this should be explicitly separate lexical scope or new
languages

29

