
SystemVerilog Assertions v3.1

Language Status Update
Panel Session

Stephen Meier – Co-Chair SV-AC
Verification Tools Group - Synopsys

12/08/2002 www.accellera.org 2

Assertion Design Objectives
• Verilog based assertion language

• Verilog for boolean and bit vector expressions
• Designed for ease of use with regular expressions,

intuitive syntax

• Unified support of verification tools
• Features defined for simulation, coverage, formal

verification and debug applications

• Template/library features for assertion
libraries and re-use

Design Working Group – initial draft, semantics defined

12/08/2002 www.accellera.org 3

Overview of Assertions in SV v3.1

• Immediate and concurrent assertions
• Enhanced regular sequence expressions
• Flexible variable expressions
• Flexible declaration and instantiation
• Common unified sampling semantics
• Template library

12/08/2002 www.accellera.org 4

Immediate Assertions

• Immediate evaluation during RTL simulation
assert_mutex : check (a^b)

 do $display (“%m passed”) ;
 else $display (“%m failed”);

• Severity level options
• Restricted to only combinational assertion

checking
• assert_strobe construct from v3.0 is deprecated

12/08/2002 www.accellera.org 5

Concurrent Assertions

• Concurrent assertions
• Sampled at specified Boolean clock expression
• Consistent cycle semantics across simulation, testbench and formal

• Types of concurrent assertion instantiation
• RTL module level

> Declarative at top level

• RTL procedural
> Enabling conditions inferred from context

• External to RTL
> Directive to bind to module or instance

12/08/2002 www.accellera.org 6

Hierarchy of Concurrent
Assertions

Property Directive

Property Declaration

Sequence Expressions

Boolean Expressions

Assert, cover

property
initial, not, accept

and, or, intersect
first_match,
time_shift, *repeat
if do else, restrictions

Verilog expr, variables,
bool, $past, $countones,
pos(neg)edge,change
$rose, $fell, ended

12/08/2002 www.accellera.org 7

Boolean Expressions - Operators
• All verilog expressions

• identical 4-state evaluation
• Past values of variables

• $past (var_name, no_of_cycles)
• Count of ones in a variable

• $countones (var_name)
• Event detectors

• posedge, negedge, change (for clocks)
• $rose, $fell, $stable : detects change of boolean

expression
• ended : detects end of sequence expression

12/08/2002 www.accellera.org 8

Expression Definitions
• Define a boolean expression using bool, sequence using

seq, property using property
• All types are named and can have parameters
• Boolean expression not attached to a clock
• Sequence and property attached to a clock

bool mem_req = (memr[2:1] && meme[1:0]);
event clkev = posedge clk ;
seq @clkev mem_fetch =

 mem_req && rd_mem ; [0:inf] mem_found;
property cache = @clkev if (cache_hit) mem_fetch ;
assert cache;

12/08/2002 www.accellera.org 9

Sequence Expressions

• Or, And, Intersect
(req ; [1] read) or (req ; [1] write)

• If Then Else: conditional matching
if ($fell (frame)) rdy ; [1] data

• Repeat: repeat a sequence multiple times
seq byte_8 = (byte_req ; [1] byte_read) * [8];

• Signal occurs within a sequence
occurs data_valid within (req ; [1:8] ack ; [1:8] grant)

12/08/2002 www.accellera.org 10

Sequence Expressions

• Restriction: restrict length and values
length [10] within (req ; [1:8] ack ; [1:8] grant)
istrue stable_sig within (req ; [1:8] ack ; [1:8] grant)

• First Match
 req ;[1] (first_match (ack ;[1 : inf] done))

12/08/2002 www.accellera.org 11

Variables in Sequences
Basic Variables
• System Verilog variables used in assertion expressions are

sampled by sampling clock
• Single variable per assertion across all attempts
Dynamic Variables with let construct
• Used to store data on a per evaluation basis
• Sampled at event in sequence where it is declared
• Ex: Variable x is assigned value of pipe_in at beginning of

pipe stage
seq e = if (valid_in)

let (int x = pipe_in) within [5] (pipe_out1 == (x + 1));

12/08/2002 www.accellera.org 12

Property Declaration

• Define assertion property with name and optional
parameters
property rule1 = @(posedge clk) if (a) (b ; [1]c ;[1] d) ;

• Reset conditions can force success (accept)
property rule2 = (accept = reset)

 @(posedge clk) if (a) (b ; [1]c ; [1] d);

• Property can be defined to never occur (not)
• Property can be checked for only the first

sampling clock tick (initial)

12/08/2002 www.accellera.org 13

Property Directives

• Assertions instantiated using property
directives
rule1_ins: assert rule1;
input_prop: assert @clk (f ; [1]g);

• Directives to guide verification
assert: Check assertion is always true
cover : Track coverage results during dynamic simulation

12/08/2002 www.accellera.org 14

Binding to Design Objects

• Assertions can be declared outside of design
and bound to the design
• Binding to a specified instance

bind_instance instance1: rule1;

• Binding to a specified module
bind_module module_x : rule2;

12/08/2002 www.accellera.org 15

Assertion Template Support
• Template feature

• Template definition with parameters
• Formal arguments can be any of: variables, Boolean and

sequence expressions
• Supports ordered or named list of arguments

template hold (exp, min = 0, max = 15, clk);
seq @(clk) e_hold = ($past(exp) == exp) *
[min:max] ;

endtemplate

hold hold_instance (s, 5, , posedge clk1);

12/08/2002 www.accellera.org 16

Concurrent Assertion Sampling
• Sampling defined by value of Boolean

expression
• Variables are sampled at the clock edge

• Variable values are stable values from previous
simulation cycle

assert e_perr : @(posedge clk) perr;

clk

perr

e_perr

0 1 2 3 4 5

Glitch on perr is
ignored

perr value
sampled at
clock edge

12/08/2002 www.accellera.org 17

Procedural Semantics
Procedural code example:

always @(posedge clk or negedge reset)
 if(reset == 0) do_reset;
 else if (mode == 1)
 case(st)
 REQ: if (!arb)
 if (foo)
 st <= REQ2;

test1: assert ((req && !gnt)*[0:5]; gnt && req; !req);

Semantics define automatic translation to declarative form:

test1: assert (accept=negedge reset) @(posedge clk)
 if ((mode == 1) && (st == REQ) && (!arb) && (!foo))
 (req && !gnt)*[0:5]; gnt && req; !req);

Sampling semantic is same for all concurrent assertions

12/08/2002 www.accellera.org 18

Overview of Assertions in SV v3.1

• Easy to Use, Expressive language
• Immediate and concurrent assertions
• Enhanced regular sequence expressions
• Per evaluation variables (let)
• Template declaration and instantiation

• Common Unified Sampling Semantics
• Cycle based sampling
• Procedural enabling condition inference

• Embedded in System Verilog
• In-line assertions in RTL
• Integration with System Verilog verification features

