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Efficient platform modeling

�Get to executable platform model ASAP
�Simulation speed >> 100k cycles/sec

DSP µC

MEM ASIC

ArbiterBUS

Moving from pin-level to transaction-level
models (TLM) is mandatory!
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Outline

Idea:
�Based on an example show how SystemC 2.0 

enables efficient platform modeling.
� Introduce some key language elements in the 

process.
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Example: Simple bus model

�Cycle-accurate transaction-level model.
� “Simple” = 

– No pipelining
– No split transactions
– No master wait states
– No request/acknowledge scheme
– …
NB: Of course, these features can be modeled at the 

transaction level
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Interface Method Calls (IMC)

� Modules communicate via channels.
� Channels implement interfaces.
� An interface is a set of methods (functions).
� Ports

– Modules have ports.
– Ports are connected to channels.
– Modules access channels through ports.
...
some_port->some_method(some_data);
...
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Interface Methods Calls   (cont’d)

module
channelprocess port

module::process() {
...
port->some_method(42);
...

}
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Hierarchical channels

�Channels can be hierarchical, i.e. they can 
contain modules, processes, and channels.

�A module that implements an interface is a 
hierarchical channel.

module
channelprocess port

module

process port

hierarchical
channel

i/f
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Example system (napkin view)

M1 M2

S1 S2

ArbiterBUS

M3 masters

slaves
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SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS 

clock
M3
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SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS 

clock
M3
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M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS 

clock

The bus is
implemented as
a hierarchical
channel!

The bus is
implemented as
a hierarchical
channel!
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M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS 

clock
Arbiter and slaves
are implemented
as channels too!

Arbiter and slaves
are implemented
as channels too!
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M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS 

clock

Arbiter has been
made a separate
module to allow
for customization!

Arbiter has been
made a separate
module to allow
for customization!
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M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS 

clock

Optionally, ports
can be connected
to multiple
channels!

Optionally, ports
can be connected
to multiple
channels!
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M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS 

clock

Optionally, ports
can be connected
to multiple
channels!

Optionally, ports
can be connected
to multiple
channels!

sc_port<class IF, unsigned n_channels = 1>sc_port<class IF, unsigned n_channels = 1>
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M3

Rising clock edge

M1 M2

S1 S2

ArbiterBUS 

clock
Masters request
bus access.
Masters request
bus access.
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M3

Falling clock edge

M1 M2

S1 S2

ArbiterBUS 

clock

The bus has a
process that is
sensitive to the
falling edge.

The bus has a
process that is
sensitive to the
falling edge.
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M3

Falling clock edge

M1 M2

S1 S2

ArbiterBUS 

clock

The arbiter is called.
It will grant a single
master access to 
the bus.

The arbiter is called.
It will grant a single
master access to 
the bus.
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M3

Falling clock edge

M1 M2

S1 S2

ArbiterBUS 

clock

Then, a slave
is accessed after
consulting the
memory map.

Then, a slave
is accessed after
consulting the
memory map.
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M3

Bus interfaces

M1 M2

S1 S2

ArbiterBUS 

clock
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Master interfaces of the bus

�Blocking:
– Complete bursts
– Used by high-level models

�Non-blocking:
– Cycle-based
– Used by processor models

�Direct:
– Immediate slave access
– Put SW debugger to work
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Blocking master interface

� status burst_read(unique_priority, data*,
start_address, length=1,
lock=false);

� status burst_write(unique_priority, data*,
start_address, length=1,
lock=false);

�“Blocking” because call returns only after 
complete transmission is finished.

� Master is identified by its unique priority.
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Dynamic Sensitivity

�SystemC 1.0
– Static sensitivity

�Processes are made sensitive to a fixed set of signals during 
elaboration

�SystemC 2.0
– Static sensitivity
– Dynamic sensitivity

�The sensitivity (activiation condition) of a process can be 
altered during simulation (after elaboration)

�Main features: events and extended wait() method
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Waiting
wait(); // as in SystemC 1.0

wait(event); // wait for event

wait(e1 | e2 | e3); // wait for first event

wait(e1 & e2 & e3); // wait for all events

wait(200, SC_NS); // wait for 200ns

// wait with timeout

wait(200, SC_NS, e1 | e2);

wait(200, SC_NS, e1 & e2);
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Dynamic sensitivity

MASTER

BUS 

clock

status bus::burst_write(...) {
...
wait(transmission_done);
...

}

Statically sensitive to clock
� activated every cycle

Master won’t be
activated until
transmission is
completed!

Master won’t be
activated until
transmission is
completed!
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Dynamic sensitivity

MASTER

BUS 

clock

status bus::burst_write(...) {
...
wait(transmission_done);
...

}

Statically sensitive to clock
� activated every cycle

Master won’t be
activated until
transmission is
completed!

Master won’t be
activated until
transmission is
completed!

Advantages:
�Easy-to-use interface (blocking interface)
�Simulation speed
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Non-blocking master interface

� status get_status(unique_priority);

� status read(unique_priority, data*,
address, lock=false);

� status write(unique_priority, data*,
address, lock=false);

� “Non-blocking” because calls return immediately.
�Less convenient than blocking API but caller remains 

in control (needed e.g. for most processor models).
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Direct master interface

� status direct_read(data*, address);

� status direct_write(data*, address);

�Provides direct access to slaves (using the bus’ 
address map).
– Immediate access ���� simulated time does not advance
– No arbitration

�Use for SW debuggers or decoupling of HW and SW.
�Use with care!
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M3

Slave interface

M1 M2

S1 S2

ArbiterBUS 

clock
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Slave interfaces

� unsigned start_address();

� unsigned end_address();

� status read(data*, address);

� status write(data*, address);

� status direct_read(data*, address);

� status direct_write(data*, address);

address 
mapping

regular
I/O

debug
interface
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What’s so cool about transaction-level 
bus models?

They are …
� relatively easy to develop and extend
�easy to use
� fast

– use of IMC ���� function calls instead of HW signals 
and control FSMs

– use of dynamic sensitivity ���� reduce unnecessary 
process activations
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Key language elements used in the 
example

� Interface method calls (IMC)
�Hierarchical channels
�Connecting ports to multiple channels
�Dynamic sensitivity / waiting
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Conclusions

SystemC 2.0 enables efficient platform modeling.
�Ease of modeling
���� get to executable platform model ASAP

�Simulation speed

Still not convinced? 

Try it out!      (see following slides)
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How to install

> cd <systemc_installation_directory>/examples/systemc

> gtar zxvf simple_bus_v2.tgz

This will create a directory 'simple_bus'. Go to this directory and

build the executable, e.g.

For gcc-2.95.2 on Solaris:

> gmake -f Makefile.gcc

…

Now you can run the executable, e.g.

> simple_bus.x

See README.txt for 
detailed information!



35

The testbench

M1 M2

S1 S2

ArbiterBUS 

clock
M3

see simple_bus_test.h
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The testbench

M1 M2

S1 S2

ArbiterBUS 

clock
M3

Blocking master:
uses blocking bus 
interface to read 
and write data

Arbiter:
Priority-based arbitration, 
supports bus locking
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The testbench

M1 M2

S1 S2

ArbiterBUS 

clock
M3

Non-blocking master:
Uses non-blocking bus 
interface for data I/O

Direct master:
uses direct interface 
of bus to print debug 
information
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The testbench

M1 M2

S1 S2

ArbiterBUS 

clock
M3

Fast memory:
zero wait states

Slow memory:
configurable number 
of wait states
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The testbench (cont’d)

� Most modules are configurable
– Masters

�Priority (not direct master)
�Delay / timeout
�Bus locking on/off (not direct master)

– Slaves
�Address ranges
�Number of wait-states (only slow memory)

– Bus, arbiter, direct master
�Verbosity

� Change parameter settings in simple_bus_test.h
� See README.txt for details



That’s it!

Thank you and have fun trying it out!


