
Transaction-level modeling
of bus-based systems with
SystemC 2.0
Ric Hilderink, Thorsten Grötker

Synopsys, Inc.

2

Efficient platform modeling

�Get to executable platform model ASAP
�Simulation speed >> 100k cycles/sec

DSP µC

MEM ASIC

ArbiterBUS

Moving from pin-level to transaction-level
models (TLM) is mandatory!

3

Outline

Idea:
�Based on an example show how SystemC 2.0

enables efficient platform modeling.
� Introduce some key language elements in the

process.

4

Example: Simple bus model

�Cycle-accurate transaction-level model.
� “Simple” =

– No pipelining
– No split transactions
– No master wait states
– No request/acknowledge scheme
– …
NB: Of course, these features can be modeled at the

transaction level

5

Interface Method Calls (IMC)

� Modules communicate via channels.
� Channels implement interfaces.
� An interface is a set of methods (functions).
� Ports

– Modules have ports.
– Ports are connected to channels.
– Modules access channels through ports.
...
some_port->some_method(some_data);
...

6

Interface Methods Calls (cont’d)

module
channelprocess port

module::process() {
...
port->some_method(42);
...

}

7

Hierarchical channels

�Channels can be hierarchical, i.e. they can
contain modules, processes, and channels.

�A module that implements an interface is a
hierarchical channel.

module
channelprocess port

module

process port

hierarchical
channel

i/f

8

Example system (napkin view)

M1 M2

S1 S2

ArbiterBUS

M3 masters

slaves

9

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS

clock
M3

10

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS

clock
M3

11

M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS

clock

The bus is
implemented as
a hierarchical
channel!

The bus is
implemented as
a hierarchical
channel!

12

M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS

clock
Arbiter and slaves
are implemented
as channels too!

Arbiter and slaves
are implemented
as channels too!

13

M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS

clock

Arbiter has been
made a separate
module to allow
for customization!

Arbiter has been
made a separate
module to allow
for customization!

14

M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS

clock

Optionally, ports
can be connected
to multiple
channels!

Optionally, ports
can be connected
to multiple
channels!

15

M3

SystemC 2.0 transaction-level model

M1 M2

S1 S2

ArbiterBUS

clock

Optionally, ports
can be connected
to multiple
channels!

Optionally, ports
can be connected
to multiple
channels!

sc_port<class IF, unsigned n_channels = 1>sc_port<class IF, unsigned n_channels = 1>

16

M3

Rising clock edge

M1 M2

S1 S2

ArbiterBUS

clock
Masters request
bus access.
Masters request
bus access.

17

M3

Falling clock edge

M1 M2

S1 S2

ArbiterBUS

clock

The bus has a
process that is
sensitive to the
falling edge.

The bus has a
process that is
sensitive to the
falling edge.

18

M3

Falling clock edge

M1 M2

S1 S2

ArbiterBUS

clock

The arbiter is called.
It will grant a single
master access to
the bus.

The arbiter is called.
It will grant a single
master access to
the bus.

19

M3

Falling clock edge

M1 M2

S1 S2

ArbiterBUS

clock

Then, a slave
is accessed after
consulting the
memory map.

Then, a slave
is accessed after
consulting the
memory map.

20

M3

Bus interfaces

M1 M2

S1 S2

ArbiterBUS

clock

21

Master interfaces of the bus

�Blocking:
– Complete bursts
– Used by high-level models

�Non-blocking:
– Cycle-based
– Used by processor models

�Direct:
– Immediate slave access
– Put SW debugger to work

22

Blocking master interface

� status burst_read(unique_priority, data*,
start_address, length=1,
lock=false);

� status burst_write(unique_priority, data*,
start_address, length=1,
lock=false);

�“Blocking” because call returns only after
complete transmission is finished.

� Master is identified by its unique priority.

23

Dynamic Sensitivity

�SystemC 1.0
– Static sensitivity

�Processes are made sensitive to a fixed set of signals during
elaboration

�SystemC 2.0
– Static sensitivity
– Dynamic sensitivity

�The sensitivity (activiation condition) of a process can be
altered during simulation (after elaboration)

�Main features: events and extended wait() method

24

Waiting
wait(); // as in SystemC 1.0

wait(event); // wait for event

wait(e1 | e2 | e3); // wait for first event

wait(e1 & e2 & e3); // wait for all events

wait(200, SC_NS); // wait for 200ns

// wait with timeout

wait(200, SC_NS, e1 | e2);

wait(200, SC_NS, e1 & e2);

25

Dynamic sensitivity

MASTER

BUS

clock

status bus::burst_write(...) {
...
wait(transmission_done);
...

}

Statically sensitive to clock
� activated every cycle

Master won’t be
activated until
transmission is
completed!

Master won’t be
activated until
transmission is
completed!

26

Dynamic sensitivity

MASTER

BUS

clock

status bus::burst_write(...) {
...
wait(transmission_done);
...

}

Statically sensitive to clock
� activated every cycle

Master won’t be
activated until
transmission is
completed!

Master won’t be
activated until
transmission is
completed!

Advantages:
�Easy-to-use interface (blocking interface)
�Simulation speed

27

Non-blocking master interface

� status get_status(unique_priority);

� status read(unique_priority, data*,
address, lock=false);

� status write(unique_priority, data*,
address, lock=false);

� “Non-blocking” because calls return immediately.
�Less convenient than blocking API but caller remains

in control (needed e.g. for most processor models).

28

Direct master interface

� status direct_read(data*, address);

� status direct_write(data*, address);

�Provides direct access to slaves (using the bus’
address map).
– Immediate access ���� simulated time does not advance
– No arbitration

�Use for SW debuggers or decoupling of HW and SW.
�Use with care!

29

M3

Slave interface

M1 M2

S1 S2

ArbiterBUS

clock

30

Slave interfaces

� unsigned start_address();

� unsigned end_address();

� status read(data*, address);

� status write(data*, address);

� status direct_read(data*, address);

� status direct_write(data*, address);

address
mapping

regular
I/O

debug
interface

31

What’s so cool about transaction-level
bus models?

They are …
� relatively easy to develop and extend
�easy to use
� fast

– use of IMC ���� function calls instead of HW signals
and control FSMs

– use of dynamic sensitivity ���� reduce unnecessary
process activations

32

Key language elements used in the
example

� Interface method calls (IMC)
�Hierarchical channels
�Connecting ports to multiple channels
�Dynamic sensitivity / waiting

33

Conclusions

SystemC 2.0 enables efficient platform modeling.
�Ease of modeling
���� get to executable platform model ASAP

�Simulation speed

Still not convinced?

Try it out! (see following slides)

34

How to install

> cd <systemc_installation_directory>/examples/systemc

> gtar zxvf simple_bus_v2.tgz

This will create a directory 'simple_bus'. Go to this directory and

build the executable, e.g.

For gcc-2.95.2 on Solaris:

> gmake -f Makefile.gcc

…

Now you can run the executable, e.g.

> simple_bus.x

See README.txt for
detailed information!

35

The testbench

M1 M2

S1 S2

ArbiterBUS

clock
M3

see simple_bus_test.h

36

The testbench

M1 M2

S1 S2

ArbiterBUS

clock
M3

Blocking master:
uses blocking bus
interface to read
and write data

Arbiter:
Priority-based arbitration,
supports bus locking

37

The testbench

M1 M2

S1 S2

ArbiterBUS

clock
M3

Non-blocking master:
Uses non-blocking bus
interface for data I/O

Direct master:
uses direct interface
of bus to print debug
information

38

The testbench

M1 M2

S1 S2

ArbiterBUS

clock
M3

Fast memory:
zero wait states

Slow memory:
configurable number
of wait states

39

The testbench (cont’d)

� Most modules are configurable
– Masters

�Priority (not direct master)
�Delay / timeout
�Bus locking on/off (not direct master)

– Slaves
�Address ranges
�Number of wait-states (only slow memory)

– Bus, arbiter, direct master
�Verbosity

� Change parameter settings in simple_bus_test.h
� See README.txt for details

That’s it!

Thank you and have fun trying it out!

